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BLOCK I – FUNDAMENTAL, PRIME 

NUMBERS AND ARITHMETIC 

FUNCTIONS 

 

UNIT: I   DIVISIBILITY 
Structure   

1.1 Introduction 

1.2 Objectives 

1.3  Divisibility 

1.4 Greatest common divisor 

 

1.1 Introduction: 
This unit introduces the basic concepts of elementary number theory 

such as divisibility, greatest common divisor, prime and composite 

numbers. We will start by discussing the notion of divisibility for the set 

of integers. We will be frequently using the fact that both addition and 

multiplication in the set of integers are associative, commutative and we 

also have distributive property a(b+c)= ab+ac for any integers a, b, c. 

These operations give the structure of a commutative ring to the set of 

integers. Divisibility can be studied more generally in any commutative 

ring, for example, the ring of polynomials with rational coefficients. 

 

1.2  Objectives:  
Students will be able to  

       Identify and list all factors of a given whole number.  

       Determine the greatest common factor of two or more whole numbers.  

       Describe the procedure for finding the greatest common factor of two        

or  more whole numbers.  

 Recognize the difference between a common factor and the greatest                                                                                     

common factor of two or more whole numbers.  

Definition 1.1.1: (The principle of induction) If Q is a set of integers such 

that 

(a) 1   Q, 

(b) n   Q implies n+1   Q, then 

(c) all integers   1 belong to Q. 

 Definition 1.1.2: (The well-ordering principle): If A is a nonempty set of 

positive integers, then A contains a smallest member. 
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1.3 Divisibility: 
 

         where        

Which satisfies the following properties. 

(i)           where                 

(ii) If     and      then                  

For,          where k   Z 

                  where  m  Z 

                             m  Z, k   Z 

                                   

                    

(iii) If     and     then                      

         where k    

                     
                 

                              

                                         

           

(iv)     and                         

(v) If             
The d is divisor of both a and b.                  

(vi)           is called a multiplication property. 

(vii) If          is called cancellation property. 

Definition 1.1.3: 

If             then d is said to be a common divisor of a and b. 

Theorem:1.1 

 Given any two integers a and b there is a common divisor d of a and b is of 

the form         where x and y are integers more over the common 

divisors of a and b divides this d. 

Proof: Case(i):             

and  Let n =     

The proof is given by induction on n. 

If n = 0        
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  The result is true for n = 0 

By induction principle we assume that the result is true for n = 0, 1, 2, …,(n-

1). 

Suppose  a  . 

If b=0, Let us take d = a, x = 1, y = 0 

If  b   ,  then we consider (a-b) and b 

Now (a-b) + b = a 

                               

                                

By our assumption the result is true for (a-b) and b. 

                        d =            

                                       

By Linearity,   d|        

                           

                 

 Hence, d is a common divisor of a and b 

And d            

               where    X , y-x    are integers. 

                

  Then by Linearity  e|      

                             

Case(ii) Let      (or)      (or) both. 

If                 and                

By case (i), d is a common divisor of             . 

By case (i)                          

Since              

Since b            
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                        ,       are some integers. 

                                                                 

Theorem 1.2: 

 The given integers a and b there is only one number d with the following 

properties 

(i)     

(ii)             

(iii)                 

Proof: Given    ,   by theorem 1.1 case (i) d satisfies conditions (ii) and 

(iii) and (-d) also satisfies  the condition (ii) and (iii). 

If   is a another common divisor which satisfies condition (ii) and (iii). 

Then,               

                   

                

Hence, there is exactly one d    which satisfies the (ii) and (iii). 

1.4 Greatest Common Divisor 

Definition 1.1.4: 

An integer    0 is said to be the greatest common divisor of  two 

integers a and b. If , 

(i)             

(ii)                 

Note: 

(i)         

(ii)           hen a and b are relatively prime. 

Theorem 1.3: Euclid’s Lemma 

If                            

Proof: Given          

                         

          

                             bcy         
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    . 

1.5 Exercises: 
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UNIT: II   FUNDAMENTAL THEOREM 

OF ARITHMETIC  

Structure 

2.1 Introduction
 

2.2 Objectives 

2.3 Prime Numbers  

2.4 The series of reciprocals of the primes  

2.5 The Euclidean Algorithm  

2.6 Exercise 

 

2.1 Introduction:  

This unit explores the special significance of the case in which the 

remainder in the Division Algorithm turns out to be zero.  We elaborately 

discuss Euclid’s algorithm for finding the greatest common divisor of two 

non-zero integers. The algorithm not only determines the gcd, but it also 

allows us to express the gcd as an integral linear combination of the given 

integers. 

2.2 Objectives:  

Students will be able to  

 to compute Greatest Common Divisor 

 to compute multiplicative inverse 

 Recognize the difference between a common factor and the greatest 

common factor of two or more whole numbers. 

2.3 Prime Numbers: 

Definition 2.1.1: An integer n is called prime if      and if the only 

positive divisors of n are 1 and n. If       and if  n is not prime, then n is 

called composite. 

Theorem 2.1: 

Every integer     is either a prime (or) a product of primes. 

Proof: 

We use induction on n 

When      which is a prime. 

                   . 
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We assume that the result is true for all integers >1 but less than n. 

If n is a prime, there is nothing to prove. 

If not, then n is composite. 

 Let n=cd, where 1<c<n,1<d<n 

Since c<n and d<n 

 Then by assumption c and d prime or product of prime. 

                            . 

Theorem 2.2: (Euclid) There are infinitely many primes. 

Proof: Suppose that there are finite number of primes (say)             

Let              

Now N>1 so either N is prime or N is a product of primes. 

Since N exceeds each    , and so N is not a prime. 

If      and               

                 

      

This is not true. 

                   . 

  N is not a product of prime. 

 This contradicts to the above theorem. 

                                    

Theorem 2.3: If a prime p does not divide a then (p,a)=1. 

Proof: Let (p,a)=d 

We have d   and d   

Since d              

Since d   and d    d   

   to p does not divide a 

     

Hence (p,a)=1. 

Theorem 2.4:  If a prime p divides ab, then p   or p  . More generally if 

p             p must divide at least one of           . 
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Proof: Assume p    and p does not divide a. 

To prove that p  . 

Since p does not divide a, by theorem 1.6, (p,a)=1 

By Euclids lemma, p  . 

The general case is proved by induction on n. 

The proof is left to the reader. 

Theorem 2.5: (Fundamental Theorem  of Arithmetic)  

Every integer     can be represented as a product of prime factors in only 

one way apart from the order of the factors. 

Proof: 

We use induction on n 

When      which is a prime. 

There is nothing to prove 

Assume that the result is true for all integers     

When n is prime, the theorem is true. 

If not, n is a composite. 

Suppose  n has 2 factorization (say)  

      ……..  =    ……..                                   (1)              

Where   ’s and   ’s are primes. 

Claim:            = some   ’s  

Since        …..  =     ……..   

         ………   

       divides atleast one of the factors. 

Without loss of generality, We have        and        are primes. 

        

From (1)       …………  =     ………..   

 

  
 =     ………...  =    ……..…   

Since    
 

  
   

   By our assumption, the result is true for 
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We have          and       ,           

                         For all    ,        ,        

       ,                     , i=1,2,...,s-1, j-1,2,...t-1. 

  s     and           for all     

Hence every integer     is uniquely written as the product of prime 

factors. 

Theorem 2.6: 

 If n=   
   

    , the set of positive divisors of n is the set of numbers of the 

form    
   

    where 0        for   i =1,2,……..r. 

Proof:   Exercise 

Note.  If we label the primes in increasing order, thus  

                                                 the nth prime, 

 Every positive integer n (including 1) can be expressed in the form  

                             n=   
   

    

where  now each exponent     . The positive divisors of n are all 

numbers of the form  

                                 
   

     where  0      . The products are  of course, 

finite. 

Theorem 2.7: 

If two positive integers a and b have the  factorizations   a=     
   

   ,  

b=   
   

     then g. c .d has the factorizations (a ,b)=      
   

     where 

each                 the smaller           . 

Proof:  

Let d=       
   

    .  Since        and       we have d | a and d | b so d is 

a common divisor of a and b .   Let e be any common   divisor   of a and b  ,  

and write e=    
   

    .  Then                . Hence e | d, so d is a   g. 

c .d of a and b. 

2.4  The series of reciprocals of the primes:- 

Theorem 2.8:- 

The infinite series  
 

  

 
    diverges. 

Proof: 

The following short proof of this theorem is due to Clarkson.  We assume 

the series converges and obtain a contradiction.  If the series converges there 

is an integer k such that  



 

10 
 

Fundamental Theorem 

Of Arithmetic 

 

Notes 

 
 

  

 

     

 
 

 
  

Let             , and consider the numbers 1+nQ for n=1,2,…  None 

of these is divisible by any of the primes              Therefore, all the 

prime factors of 1+nQ occur among the primes              Therefore for 

each      we have 

 
 

    
    

 

  

 

     

 

 

   

 

   

  

Since the sum on the right includes among its terms all the terms on the left.  

But the right-hand side of this inequality is dominated by the convergent 

geometric series 

  
 

 
 

  

   

  

Therefore the series   
        

    has bounded partial sums and hence 

converges.  But this is a contradiction because the integral test or the limit 

comparison test shows that this series diverges. 

Theorem 2.9: Division Algorithm 

Given integers a and b with     there exits unique integers q and r such 

that        where      . More over           

Proof: 

Let                                         be the set of positive 

integers. 

  S is non-empty. 

By well-ordering principle, S contains a smallest member (say)      

Let                     

        with      

Claim:      

Suppose that      

       

           

                       

         

                is the smallest element in S. 
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     r is the smallest element in S.  

     

Hence,         with        

To prove that:  

The integers q and r are unique suppose that, the another pair of integers 

          

Such that,                          

                                             

                       

              

        

If         

                                                     

                     

         

      

 Also      
          

                      
  

Hence there is a unique integer q and r such that ,                

                      

2.5                     

Theorem 2.10: Euclidean Algorithm 

Given positive integers a and b where    . Let   = a and   = b, and apply 

the division algorithm repeatedly to obtain the set of remainders 

       ……….  ,                                      relations 

  =         ,              

  =     +           

  

    =         +   ,                    

    =     +               
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Then    ,  last nonzero remainder in this process is (a,b), the greatest 

common divisor of a and b. 

Proof: 

 Given    is decreasing and positive. 

Now,     =     +      

         =                

         

Now,     =         +    

           +    

          + 1) 

         

Continuing like this, we get 

     = b,        = a 

    is a common divisor of a and b. 

If         and        

     =                    

      

Similarly,     ,      ……….,       ,      

     is the Greatest common divisor of a and b. 

2.6 Exercises: 
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UNIT: III  ARITHMETICAL 

FUNCTIONS AND DIRICHLET   

MULTIPLICATION 

Structure 

3.1 Introduction 

3.2 Objectives 

3.3 The Mobius function       

3.4 The Euler Totient function       

3.5 A relation connecting         – A Product formula for        

3.6 Exercise 

3.1 Introduction: 

Number theory, like many branch of mathematics, is often concerned with 

sequences of real or complex numbers. In number theory such sequence are 

called                         This unit introduces several arithmetical 

functions which play an important role in study of divisibility properties of 

integers and the distribution of primes. 

3.2 Objectives: 

 The students will be able to  

 Describe the properties of Mobius function 

 Determine the product formula for Eulers totient function 

 Identify the relation between                 

Definition 3.1.1: A real or complex-valued function defined on the positive 

integers is called an arithmetical function or a number-theoretic function. 

3.3 The M bius function µ    

Definition 3.1.2: The Möbius function  (µ)  is an arithmetic function  

defined by, 

If                    

If              
    

  ………….  
  where    ’s are distinct primes. 

                                

                                       
  

Note: 

(i) n:   1   2   3   4   5   6   7   8   9   10 
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                      1  -1  -1   0  -1   1  -1   0   0    1 

(ii)                              

Theorem 3.1: 

     For      we have           
 

 
   

          
          

  

Proof: 

If       then 

            

   

 

If       then      
    

   ………  
   where   ’s are distinct primes and 

      ……….     . 

Consider,            
    

    
       

 

      

The sum          has a non-zero terms only When 

                                         

                            …….,.          ),………      ……..     

              +                +            

 (   1  ) 

                      +               

                          (-1)+k       +     k        

                = 0 

3.4 Euler’s totient function 

Definition 3.1.3: (Euler’s totient function)      

 If      the Euler’s totient function       is an arithmetic function defined 

to be the set of positive integers not exceeding n which are relatively prime 

to n. 

                
   , where dash denotes the sum is taken over  those k 

which are relatively prime to n. 

Theorem 3.1:- 

If     we have             

Proof:- 

Let S = {1,2,…,n}.   

For each divisor d of n, let                         
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That is, A(d) contains those elements of S which have the gcd d with n.  

Claim: The subsets A(d)  of S form a disjoint collection whose union is S. 

If        are two divisors of n. 

Let               

          and         

  (x,n)=    and (x,n)=    

       

This is a contradiction. 

The subsets A(d) form a disjoint collection whose union is S.  Therefore if 

f(d) denotes the number of integers in A(d) we have 

     

   

    

But (k,n)=d if and only if            , and       if and only if 

            Therefore , if we let q=    there is one-to-one 

correspondence between the elements in A(d) and those integer q satisfying 

         (q,n/d)=1.  The number of such q is   
 

 
     

Hence f(d) =    
 

 
  and             becomes 

       

   

    

But this is equivalent to the statement            because when d runs 

through all divisors of n so does n/d.  This completes the proof. 
 

Theorem:3.2 

If       we have           
 

     

Proof: By the definition of  , we have 

          
   ,  where dash denotes the sum is taken over  those k which 

are                                                     relatively prime to n. 

            
 

     
  

    relatively prime to n. 

                       
 
         (by  theorem 3.1) 

                   

         

 

   

 

For a fixed d, the first sum is taken over all k which are multiples of d. 
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    ,   where   q = 

 

 
 

                          
 

 
  

                      

 
  

      

 

                          

   

  

 

 

   

 

 

                         

   

 

 
 

3.5 A Relation Connecting         

Theorem: 3.3 Product formula for Euler’s Totient function 

If     , where           
 

 
     where p is prime divisor of n. 

Proof: 

When        L.H.S:       

R.H.S       
 

 
     where P is prime. 

No prime divides one , so the product is empty. 

So assume that R.H.S =1 

If     , then     
       

   where   ’s are distinct 

primes.   ….      

Consider,  
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R.H.S                
 

 
     

                          
    

 
   

 

                              
 

 
   

 

                              (by theorem 3.2) 

                              

Theorem: 3.4 Properties of Euler’s Totient Function 

(i)              , where p is a prime and     

(ii)               
 

    
               

(iii)                           

(iv)  a|b            

(v)                     .  

Moreover if n has r distinct odd prime factors then         

Proof: 

(i) By the product formula, 

          
 

 
     where p is prime divisor of n 

Put     , we get  
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Since the prime divisor of    is p only. 

             
 

 
  

                          

(ii)By the product formula, 

          
 

 
     where p is a prime divisor of n 

    

 
     

 

 
 

   

 

Put n = mn, we have 

            

  
 =     

 

 
      

Since each prime divisors of mn is either a prime divisor of m or of n and 

those primeswhich divide both m and n it also divide (m,n) 

    
     

  
 

    
 

 
        

 

 
    

    
 

 
        

 

       
     

 

 
      

 

 
       

    
 

 
    

 

                  =
         

    

 

 

                 
 

    
                 

(iii)By property(ii) 

                
 

    
                

Put d=1 then             

  
 

    
   

                        

(iv)Given a|b                   

When           
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WKT,  1 divides every integer 

                   

When       

          

           

              
 

    
                       

           
    

    
     

The proof is given by induction on b. 

If  b = 1,               

(*) becomes,         
    

    
 

                   

 The result is true for b = 1 

 By induction we assume that the result is true for all integers     

 Since    , The result is true for c. 

                      

              

                      

 
    

    
=k 

Equation (*) becomes,  

             

           

(v) put     ,             

By property (1)  

              

                

                   
 

 
  

      is even for     
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 If n has atleast one odd prime  factor, by product formula, 

          
 

 
           

 

 
     

                                                 
 

 
 

   

 

                                             
 

     
      

   

 

                    where c = 
 

     
 

 Where nc is an integer for at least one odd prime factor, we will get  (p-1) is 

even. 

     is even 

If n has r distinct odd prime factors  

        term of the product           contributes  a factor 2 to this 

product. 

           

   

 

         

Hence proved 

 3.6 Exercise:  

1. Find all integer n such that 

(a)         ,    (b)           ,    (c)         

2. For each of the following statement either give a proof or exhibit a 

counter example. 

(a) If (m,n)=1 then (         ) = 1 

(b)  If n is composite then (      )>1 

(c)  If the same primes divide m and n then              

3. Prove that 

 

    
  

     

    
   

  

Prove that         for all n with at most 8 distinct prime factors. 
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UNIT:IV DIRICHLET PRODUCT OF 

ARITHMETICAL FUNCTIONS 

Structure 

4.1 Introduction 

4.2 Objectives 

4.3 Dirichlet inverses and the Mobius inversion formula  

4.4 The Mangoldt function        

4.5 Exercise 

4.1 Introduction:  

The two obvious operations on the set of arithmetic functions are point wise 

addition and multiplication. The constant functions f= 0 and f= 1are neutral 

elements with respect to these operations, and the additive and 

multiplicative inverses of a function f are given by−f and 1/f, respectively. 

While these operations are sometimes useful, by far the most important 

operation among arithmetic function is called Dirichlet product, an 

operation that, at first glance, appears mysterious and unmotivated, but 

which has proved to be an extremely useful tool in the theory of arithmetic 

functions. 

4.2 Objectives: 

 The students will be able to  

 Derive Mobius inversion formula 

 Describe the properties of Mangolt function 

 Recognise the Dirichlet inverse of arithmetical functions 

Definition 4.1.1: 

Let f and g be arithmetic functions. Then, the Dirichlet multiplication of f 

and g is denoted by h and is defined as 

              

                     
 

 
 

   

 

Definition 4.1.2: 

 The power function     is an arithmetic function is defined by       
     

Definition 4.1.3: 

The unit function u is an arithmetic function is defined by           
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Definition 4.1.4: 

The identity function I is an arithmetic function is defined by 

      
 

 
   

        
        

  

 

Result: 

 Express        
 

 
     as a dirichlet multiplication 

Proof: 

       
 

 
 

   

 

       
 

 
 

    

      

              

                      

Result: 

Express           
 

      in dirichlet multiplication. 

Proof:           
 

     

                                 
 

 
 

   

 

                                  

                   

Note: 

               
 

 
 

   

 

                              

    

 

Theorem: 4.1  

Dirichlet multiplication is commutative and associative 

Proof: 

Let f and g be two arithmetic functions 
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To prove:         

                  

    

 

                               

                  

Hence dirichlet multiplication is commutative. 

Let            be an arithmetic function. 

To prove:                 

                   L.H.S         =        

                                                                

                                          ) 

                                                         

        

 

              

                  

    

  

                         R.H.S         

                                                              

                                     

    

 

                                                       

        

 

                                                    

     

 

Hence dirichlet multiplication is Associative. 

Theorem: 4.2 

For any arithmetic function f we have           where I is identity 

function. 

Proof: 
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Since Dirichlet multiplication is commutative. 

        

              

Hence proved. 

4.3 Dirichlet Inverses and Mobius Inversion Formula 

Theorem: 4.3 

If     is an arithmetic function with        there is a unique inverse    is 

called the dirichlet inverse such that                  Then, 

(i)     
 

    
          

(ii)        
  

    
   

 

 
                   

   

 

Proof: 

 (i)If     

Given                 

                                

             
    

 

 
    

    (1)  
 

    
         

Since        so     exists and is uniquely determined. 

(ii) For     , we have 
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Theorem 4.4: Mobius inversion formula 

The equation                                       
 

 
        

Proof: 

Assume that               

                                         
 

 
 

   

 

                                           

                                   

Multiply   on both sides to the above equation, we get 

                           

                                                                                   

                                                              

                                

                              

                              

                                   
 

 
 

   

 

Conversely assume that,            
 

 
     

                                                           

                                                         

Multiply u on both sides of the above equation, we get 
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4.4 Mongoldt function 

Definition 4.1.5: Mongoldt function (    ) 

For every integer     the Mongoldt’s              is defined by  

      
                                            

                                                              
  

Assume that                . 

Note: 

      n:   1      2         3       4         5        6      7        8         9         10 

        0                              0                          0 

Theorem 4.5: 

If                         

Proof: 

If              

L.H.S           

                         

R.H.S         

   R.H.S = L.H.S 

For       

Let      
    

      
           

                                  

R.H.S =      
    

      
    

                 
        

           
   

                                         

                     

 

   
 

        L.H.S               
    

       
   

The non-zero items of          occurs only when 
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L.H.S: 

                
       

              
       

   

   

                     
    

                                                            
                          log  +     log     +log   

                                                  

                              

 

   

 

                  = R.H.S 

Theorem 4.6: 

For      we have              
 

 
                   

Proof: 

W.K.T                

 By Mobius Inversion formula 

i.e)                              
 

 
        

Take   log, g=Λ in Mobius inversion formula 

Then we have  
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 4.5 Exercise: 

1. Prove that          
   (d)=0 if  m    
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BLOCK II: MULTIPLICATIVE 

FUNCTIONS AND FORMAL POWER 

SERIES 

 

UNIT-V: MULTIPLICATIVE 

FUNCTIONS 

Structure 

5.1Introduction 

5.2 Objectives 

5.3 Multiplicative function 

5.4 Multiplicative functions and Dirichilet Multiplicative  

5.5 The inverse of a completely multiplicative function  

5.6  Liovile’s function          The divisor function  (n) 

5.7 Exercise 

 

5.1 Introduction:  

This unit introduces the Dirichlet product of two arithmetic functions. It will 

give the set of all arithmetic functions the structure of a monoid. Further,we 

will see how the Dirichlet product gives the structure of an abelian group to 

the set of all arithmetic functions which do not vanish at 1. The Mobius 

Inversion Formula also follows easily from Dirichlet product. 

5.2 Objectives:  

The students will be able to 

 Identify the properties of Liouvilles function 

 Describe the difference between multiplicative and completely 

multiplicative functions 

 Determine the properties of divisor functions 

5.3 Multiplicative function 

Definition 5.1.1: Multiplicative function: 

     An arithmetic function   is called multiplicative      is not identically 

zero and if                                  

Definition 5.1.2: Completely multiplicative function: 
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A multiplicative function   is said to be completely multiplicative 

if                               . 

Example: 

1. Euler’s totient function is multiplicative but not completely 

multiplicative. 

By the proof of Euler’s totient function 

                                  

   is multiplicative. 

   Euler totient function is multiplicative but not completely multiplicative. 

                     

                

    

2.The power series is completely multiplicative. 

            

                      

3.The unit function is completely multiplicative. 

                             

4. The identity function is completely multiplicative. 

  If         

Then      

               

            

               

                                 

                         

                 

Similarly,                                

                        

5.Mongoldt function is  not completely multiplicative. 

If          
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  Mongoldt function is not multiplicative 

Hence Mongoldt function is not completely multiplicative. 

6.Mobius function is multiplicative but not completely multiplicative. 

Let         

To prove:                 

Suppose that either   is square free or   is both   and   are square free. 

                  

              

                                 

      Let              where   
   are distinct primes          

And                    where      are distinct primes          

                    

                                  

                    

                                

                              

  Mobius function is multiplicative 

Now,         

                    

                          

                             

Hence Mobius function is not completely multiplicative. 

Theorem: 5.1 

 If   is multiplicative             . 

Proof: 

Given   is multilplicative. 
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Theorem: 5.2 

Let       an arithmetic function with f(1)=1. Then 

(a)  is multiplicative if and only if 

    
    

       
        

       
          

    for all primes 

   and all integers       

(b)If   is multiplicative then   is completely multiplicative if and only if 

                                                         

Proof: 

Suppose   is multiplicative 

Then                   whenever         

The result will prove by induction on “k”  

When     

    
        

    

The result is true for     

We assume that the result is true for all integers   

(i.e)    
    

      
          

       
         

      

Since            are distinct primes. 

    
     

        
      

Now,     
    

      
      

        
    

      
         

    

                                                      
       

         
         

    

                                                                                                        (by 

assumption) 

                                                                      
       

          
    

Conversely, assume that 

    
    

       
        

       
         

    

Claim:   is multiplicative 

Let         
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Let     
     

       
      and 

    
    

       
    where      and      are distinct primes. 

Then       
    

      
      

    
      

    

               
    

      
    

    
      

    

                      
       

          
      

 
      

 
        

 
    

                      
    

      
      

 
   

 
     

 
    

                            

   is multiplicative. 

Proof of (b): 

 Suppose   is completely multiplicative. 

Then                            

Claim:                              

This will prove by induction on  . 

When     

              

  The result is true for     

We assume that the result is true for all integers    

i.e)                   

Now,                    

                                    

                                      

                                

Hence,                             

Conversely,  assume that                                   

Claim:  f is completely multiplicative 

Let     
    

      
      

        
     and 

              
        

      
        

   

Then  
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    is completely multiplicative. 

5.4. Multiplicative functions and dirichlet multiplication: 

Theorem 5.3: 

      and   are multiplicative. Then       is multiplicative. 

Proof: 

Let         

To prove that:     is multiplicative 

i.e) prove that:  

                           

 Now,                  
  

 
      

The divisor of    f mn can put     . 

                  
  

  
 

     

 

                                   
 

 
   

 

 
 

   
   

 

 
                                  

                         
 

 
 
 

 
   

  

                             
 

 
        

 

 
 

      

 

                                      

    is multiplicative. 

Result: 

If   is completely multiplicative and   is completely multiplicative. Then    

    need not be completely multiplicative. 
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W.K.T The unit function   and the power function   are completely 

multiplicative. 

To prove that                                         

 i.e) to prove that                       

Consider                 
 

 
     

                                                                  

                                           

                   

                 
  

 
 

    

 

                                       
                                

                                       

                                

                     

Theorem 5.4: 

If both   and     are multiplicative then   is also multiplicative. 

Proof: 

The proof is given by contradiction 

Assume that   is not multiplicative 

i.e)                whenever         

If we choose such a          for which the product 

                          . 

i.e)                         

                

Case(i): 

If        

i.e)            
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 Now,                 
 

 
     

                            ) 

                                          

                                    and                           

                            

                            

   is multiplicative. 

Case(ii): If       and mn is the least product for which 

               whenever         

If                       

                   here    
 

 
 

 

 
    

Consider                   
  

 
      

                                                    
  

  
 

     

 

                                                  
  

  
           

   
   

     

 

                            
 

 
   

 

 
       

   
   

     

 

(Since                                ) 

                                                                                                                                                            

            
 

 
   

 

 
                         

   
   

     

 

                                 

                            

(                 ) 

     is not multiplicative. 

We get a contradiction. 

 In both the cases we get a contradiction. 
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Hence f is multiplicative. 

Theorem 5.5: 

If    is multiplicative then its dirichlet inverse     is also multiplicative. 

Proof: 

W.K.T,         where   is an identity function 

The identity function is completely multiplicative. 

So,   is multiplicative 

      is multiplicative. 

Given:   is multiplicative. 

By  theorem 5.4,     is multiplicative. 

5.5 The inverse of a completely multiplicative function: 

 The dirichlet inverse of a completely multiplicative function is especially 

easy to determine. 

Theorem 5.6: 

Let   be multiplicative. Then   is completely multiplicative if and only if 

                             

Proof: 

Assume that   is completely multiplicative 

Let                

To prove that:             

(               
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Conversely, assume that f be multiplicative and  

                               

To prove that:   is completely multiplicative 

i.e) to prove that               for all  prime p and     

W.K.T                       

                

         
 

 
      

   

 

           
 

 
      

   

 

Put       

           
  

 
        if n>1 

                               

                   

                                                                

                                                              

  

  

                                                   

Hence f is completely multiplicative. 

 Result: What is the inverse Euler’s totient function ? 

 W.K.T         

                         

W.K.T, the power function is completely multiplicative 

By previous theorem, 
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Theorem 5.7: 

Let   be multiplicative. Then                           and 

hence                 . 

Proof: 

Let                   

                           

   

 

                             
 

 
 

   

 

                             

                     

Since         is multiplicative 

    is multiplicative. 

W.K.T,   is multiplicative. 

      is multiplicative. 

    is multiplicative. 

                    

    

 

                                                             

                                                                                                          
            

                                                  ,      ,       
       ..) 
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    Let      
    

      
   where      are distinct primes and      

               
    

       
    

                     
       

         
                              

                                               

                         

   

 

          

   

                                                 

   

 

W.K.T,                      

Comparing to     we get  

                                

   

 

Definition 5.6: Liouville’s function      

Definition 5.1.3: Liouville’s function   is an arithmetic function is defined 

by  

       and i      
       

   we define 

                      

Note: 

1)             

           =        

  Hence liouville’s function is completely multiplicative.  

Theorem 5.6: 

For              we have  

       
                  
                       

 

   

 

Moreover               for all  . 

Proof: 

Let                
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Since         are multiplicative 

    is multiplicative 

     Put      

           

    

 

                                  

                                    

                
                  

             
  

              
       

   where   
                              

            
          

    

               
                       
                      

  

              

            
        

   

            
         

    

               
   

 
       

   
 
 

      
                
               

  

       
                
                 

 

   

 

W.K.T    is completely multiplicative 

                

                        

                    

                     

Definition 5.1.4: For any real or complex                        the 

divisor function is defined by           
    

i.e)       is the sum of the     power of divisors of n. 

Note: 1 

  is multiplicative 
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Note: 2 

If       

            

      

 

The number of divisors of n it is denoted by       

i.e)            

Note: 3 

If        

            = sum of the divisors of   

It is denoted by      

             

Theorem 5.7 

For      we have  

  
               

 

 
 

   

 

Proof: 

W.K.T           
    

                                   
 

 
 

   

 

                                    

                        

                
              

Since    is completely multiplicative 
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 5.7 Exercise:  

1.Assume f is multiplicative.  Prove that: 

(a)                  for every square free n. 

(b)                     for every prime p. 

2.Assume f is multiplicative.  Prove that f is completely multiplicative if and 

only if  

          for all primes p and all integers a  . 

3.If f is completely multiplicative, prove that                     for 

all arithmetical functions g and h, where f.g denotes ordinary product 

(f.g)(n)=f(n)g(n). 

4.If f is multiplicative and relations in (a) holds for     and      , 

prove that f is completely multiplicative. 

5. If f is completely multiplicative, prove that              for every 

arithmetical functions g(1)  . 

6. If f is multiplicative and relations in (a) holds for      , prove that f is 

completely multiplicative.
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UNIT-VI: FORMAL POWER SERIES 

Structure: 

6.1 Introduction 

6.2 Objectives 

6.3 Generalized Convolutions  

6.4 Formal Power Series 

6.5 Exercise 

 

6.1 Introduction:  

This unit gives the idea of convolutions and gives the relation between 

associative property of dirichlet multiplication and convolution of any three 

arithmetical functions. It derives the Gereralized Mobius inversion formula 

by using convolutions. 

6.2 Objectives: 

 The students will be able to  

 Analyse the convolution of arithmetical functions 

 Describe the properties of convolutions 

 Recognise the relation between power series of arithmetical 

functions 

6.3 Generalized Convolutions 

Definition 6.1.1: 

Let F be a real or complex valued function defined on the positive real axis 

such that             .  

Let   be an arithmetical function then the sum of              
 

 
      

is called the generalized convolutions of G and is denoted by          

(i.e)                 
 

 
    . 

Theorem 6.1 Associative property for relating with        

For any arithmetical function         , we have                . 

Proof: 

         (x) =            
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 ,   mn=k 

          
 

 
   

 

 
 

   

 

   

 

            
 

 
 

   

 

              

Therefore                   

Theorem 6.2  Generalized inversion formula 

If    has a Dirichlet inverse     then the equation             
 

 
     if 

and only if               
 

 
     

Proof: 

Let       

Then multiply     on both sides 

                  

                       

                            
 

 
 

   

 

Conversely, assume that                   
 

 
  

                  

             (multiply   on both side) 

                                

                

            
 

 
 

   

 

Theorem 6.3: Generalized M  bius inversion formula 

If   is completely multiplicative, then the equation             
 

 
      

if and only if                 
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Proof: 

Assume that             
 

 
     

                                       

          (multiply     on both side) 

                                

                 

              
 

 
 

   

 

                
 

 
 

   

 

(since   is completely multiplicative) 

Conversely assume that,                 
 

 
     

              
 

 
 

   

 

                

          (multiply   on both sides, we get) 

                              

                      
 

 
 

   

 

 Hence the proof 

 6.4 Formal power series:  

In calculus an infinite series of the form 

                                   
   +… 

is called a power series in x. Both x and the coefficients a(n) are real or 

complex numbers. To each power series there corresponds a radius of 

convergence      such that the series converges absolutely if       and 

diverges if     .(The radius r can be   ). 

In this section we consider power series from a different point of view.We 

call them formal power series to distinguish them from the ordinary power 

series of calculus. In the theory of formal power series x  assigned a 

numerical value, and questions of convergence or divergence are not of 

interest. 

The object of interest is the sequence of coefficients 
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All what we do with formal power series could also be done by treating the 

sequence of coefficients as though it were an infinite dimensional vector 

with components a(0),a(1),…a(n) but for our purpose it is more convenient 

to display the terms as coefficients of a power series as in (12) rather than as 

components of a vector as in (13). The symbol    is simply a device for 

locating the position of the nth coefficient a(n). The coefficient a(0) is called  

the constant coefficients of the series. 

We operate on formal power series algebraically as though they were 

convergent power series. If A(x) and B(x) are two formal power series, say  

            

 

   

                                          

 

   

 

We define: 

Equality:    A(x) = B(x) means that a(n)=b(n) for all     

Sum:          A(x) + B(x) =                
    

Product:     A(x)B(x) =         
    

                          

 

   

 

The sequence        determined by (14) is called the Cauchy product of the 

sequences {a(n)} and {b(n)}. 

The reader can easily verify that these two operations satisfy the 

commutative and associative laws, and that multiplication is distributive 

with respective to addition. In the language of modern algebra, formal 

power series form a ring. The ring has a zero element for addition which we 

denote by 0. 

          
    where a(n) = 0 for all    , 

And an identity element for multiplication which we denote by 1, 

          
                                   , 

A formal power series is called a formal polynomial if all its coefficients are 

0from some point on. 

For each formal power series              
    with constant 

coefficients         there is a uniquely determined formal power series  

             
   such that A(x)B(x)=1. Its coefficients can be 

determined by solving the infinite system of equations 
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In succession for b(0), b(1),b(2),… The series B(x) is called the inverse of 

A(x)  

The special series,                 
    

Is called a geometric series. Here a is an arbitrary real or complex number. 

Its inverse is the formal power series 

          

In otherwords, we have  

 

    
           

   . 

 

Exercise:  

1.Let f be a multiplicative and let g be any arithmetical function.  Assume 

that  

(a)                                for all primes p and all      

Prove that for each prime p the Bell series for f  has the form 

(b)  
     

 

              
. 

Conversely, prove that (b) implies (a). 

2. If g is completely multiplicative prove that statement (a) of  above 

exercise 1 implies 

                
  

          , 

Where the sum is extended over the positive divisors of the gcd(m,n).  [Hint:  

Consider first the case             
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UNIT: VII   BELL SERIES 

Structure 

7.1 Introduction 

7.2 Objectives 

7.3 The Bell series of an arithmetic function  

7.4 Bell Series and Dirichlet Multiplication  

7.5 Derivatives of arithmetic functions  

7.6 The Selberg identity. 

7.1 Introduction:  

This unit explores the properties of multiplicative arithmetical functions 

using formal power series. It explains the relation between multiplication of 

Bell series to Dirichlet multiplication. It states that the usual rules for 

differentiating sums and products also hold if the products are dirichlet 

products.  

7.2 Objectives: 

 The students will be able to  

 Describe the Bell series of arithmetical functions 

 Determine the derivatives of inverse functions 

 Derive Selberg identity 

7.3 The Bell series of an arithmetical function: 

Given an arithmetical function f and a prime p, we denote by fp(x) the 

formal power series                
    and call this the Bell series of f 

modulo p. 

Bell series are especially useful when f is multiplicative. 

Theorem:7.1  (Uniqueness theorem) 

Let f and g be multiplicative functions then f = g if and only if, 

            for all primes p. 

Proof: 

If f = g then       =       for all p and all n ≥ 0, so            . 

Conversely, if              for all p then       =       for all n ≥ 0. 

Since f and g are multiplicative and agree at all prime powers they agree at 

all the positive integers, so f = g. 
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Example: 1 

Mobius function  . Since          and          for n ≥ 2 we have  

           

7.4 Bell series and Dirichlet multiplication: 

Theorem:7.2 

For any two arithmetical functions f and g let        . Then for every 

prime p we have                  

Proof: 

Since the divisors of     are 1, p,        we have  

                           h(  ) =        
  

 
 

     
 =               

 

   
 

This completes the proof because the last sum is the  Cauchy product of the 

sequences {f(  )} and {g(  )}. 

7.5 Derivative  of  arithmetical  functions: 

Definition 7.1.1:     For any  arithmetical  function  f   we define  its  

derivative   to  be the arithmetical  function given  by the equation        

=f(n)log n  for  n    

Example:     since I(n)log n =0  for all  n  we have   =0.  Since u(n)=1 for 

all n we have       =log n.  Hence, the formula         =log n can be 

written as  

                                              =   …………….(1) 

Theorem 7.3:If  f and g are arithmetical functions we have: 

a)       =     . 

b)       =         . 

c)       =           ,  provide that f(1)≠0. 

Proof: 

The  proof of  (a)  is immediate .  of course , it is understood that f+g is the 

function for which (f+g)(n)=f(n)+g(n)  for all n. 

      To prove (b)  we use the identity  log n=log d+log(n/d)  to  write 

         =       
 

 
         

                                 =             
 

 
    +       

 

 
       

 

 
 

                                 =       (n)+(    )(n). 
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       To prove(c)  we apply part  (b) to the formula    =0, remembering that 

I=f*   . This gives us  

                  0=        =                 

So  f *  (     =               =              

But                     so (c)  is proved. 

7.6 THE SELBERG IDENTITY 

Using  the  concept of derivative we can quickly derive a  formula of selberg  

which  is sometimes used  as the starting point of an elementary proof of the  

prime number theorem. 

Theorem 7.4:  (The selberg  identity) 

For   1 we have,                 
 

 
               

 

 
      

Proof: 

                     WKT            Differentiation of this equation gives us  

         =    

Or since          

            =    

Now we multiply both sides by       to obtain  

      =       

This the required  identity. 

7.7 Exercise:  

1.Prove that                
          

  

  
   

2.Prove that Liouville’s function is given by the formula      

   
 

  
       

3.Assume that g is multiplicative and let f=    

a) prove that if p is prime and k   we have 

f(  )= -               
    

b) Let h be the uniquely determined multiplicative function 

which agrees with f at the prime powers.  Show that h*g 

agrees with the identity function I at the prime powers and  

 

c) deduce that h*g=I. This shows that f=h so f is multiplicative. 

4.If f and g are multiplicative and if a and b are positive integers with a  , 

prove that the function h is given by  
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                                     h(n) =    
 

     
 

       is also multiplicative. The 

sum is extended over those divisors d of n for which   divides n.
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UNIT –  VIII  : AVERAGES OF 

ARITHMETICAL FUNCTIONS 

Structure 

8.1 Introduction  

8.2 Objectives 

8.3 The big oh notation, 

8.4 Asymptotic equality of functions 

8.5 Exercise 

 

8.1 Introduction:  

 Big O notation is a mathematical notation that describes the limiting 

behavior of a function when the argument tends towards a particular value 

or infinity. It is a member of a family of notations invented by Paul 

Bachmann, Edmund Landau is called Bachmann–Landau notation or 

asymptotic notation. This unit explores Big oh function and its importance.  

8.2 Objectives:  

The students will be able to  

 Determine Big oh function and its relations 

 Recognise the equality of functions 

 Describe the properties of Big Oh functions 

General Introduction: 

The last chapter discussed various identities satisfied by arithmetical 

functions such as                and the divisor functions     .we 

enquire about the behaviour of these and other arithmetical functions f(n) for 

large values of n. 

For example, consider d(n), the number of divisors of n. This function takes 

on the value 2 infinitely often(when n is prime) and it also takes on 

arbitrarily large values when n has large number of divisors. Thus the value 

of d(n) fluctuate considerably as n increases. 

Many arithmetical functions fluctuates in this manner and it is often difficult 

to determine their behaviour for large n. sometimes it is more fruitful to 

study the arithmetical mean. 

      
 

 
     

 

   
 

Averages smooth out fluctuations so it is reasonable to expect that the mean 

value       might behave more regularly than f(n). This is indeed the case 

https://en.wikipedia.org/wiki/Asymptotic_analysis
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for the divisor function d(n).we will prove later that the average grows like 

log n. more precisely, 

                                             
      

    
   …(1) 

To study the average of an arbitrary function f need a knowledge of its 

partial sum .sometimes it is convenient to replace the upper index n by an 

arbitrary positive real number x and to consider instead sums of the form 

     

   

 

Here it is understood that the index k varies from 1 to    , the greatest 

integer   . If       the sum is empty and we assign it the value 0. Our 

goal is to determine the behaviour of this sum as a function of x, especially 

for large x. 

For the divisor function we will prove a result obtained by dirichlet in 1849, 

which is stronger than (1), namely 

                            …….(2) 

For all      Here C is Euler’s constant, defined by the equation 

           
 

 
   

 

 
      ………..(3) 

The symbol       represents an unspecified function of x which grows no 

faster than some constant times   . This is an example of “big oh” notation 

which is defined as follows. 

8.3 The big oh notation. Asymptotic equality of functions: 

Definition: If g(x)  , for all      we write              to mean 

that the quotient 
    

    
 is bounded for      (i.e.,) there exist a constant 

M             

                                   

An equation of the form 

                  

Means that                    we note that              for 

   , implies 

                 
 

 
 

 

 
 for     

Definition:If 

   
   

    

    
   

We say that f(x) is asymptotic to g(x) as    , and we write  
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For example, eq (2) implies that  

            
   

         

In equation (2), the term x logx is called the asymptotic value of the sum; 

the other two terms represent the error made by approximating the sum by 

its asymptotic value. If we denote this error by E(x), then (2) states that 

                  ………(4) 

This could also be written E(x) = O(x), an equation which is correct but 

which does not convey the more precise information in eq (4). eq (4) tells us 

that the asymptotic value of E(x) is        . 

8.4 Exercises:  
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UNIT-IX: ASYMPTOTIC FORMULAS 

Structure: 

9.1 Introduction 

9.2 Objectives 

9.3 Euler’s Summation formula  

9.4 Some elementary asymptotic formulas 

9.5 The average order of       

9.6 The average order of the divisor function’s   (n). 

9.7 Exercise 

9.1 Introduction:  

 Sometimes the asymptotic value of a partial sum can be obtained by 

comparing it with an integral. Eulers summation formula gives an exact 

expression for the error made in such approximation. This unit derives the 

Dirichlet asymptotic formula for the partial sums of the divisor function 

d(n),        . 

9.2 Objectives:  

The students will be able to  

 Determine the Eulers summation formula 

 Describe the asymptotic formulas 

 Recognise the average order of d(n)  

9.3 Euler’s summation formula:  

Theorem 9.1: 

If f has a continuous derivative fˈ on the interval [y, x], where 0 < y <x, then 

                      

 

 

                                

 

      

 

 

Proof: 
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Let m=[y], k=[x].  For any interval (n-1, n) in [y, x], then 

                          

 

   

 

   

 

               

 

   

 

                    

                                  

Summing up  for n=m+1,m+2,...,k, we have 

                         

   

 

 

   

            

   

   

     

            

 

   

 

                                      
                                        
2   +3              1   1  ( )                                                     
(by using(1)) 

                                        
      

                               

     

 

 

 

     

     

                 

 

 

            

Now,                      
 

 

 

 
             

    

 

 

                         

             

 

 

                     

 

 

 

                       

 

 

      

Using (3) and (4), (2) becomes, 
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Using (6) , (5) becomes 

     

     

                              

 

 

 

     

     

                            

 

 

                              

 

 

 

 

 

       

     

        

 

 

                                        

 

 

 

9.4 Some elementary asymptotic formulas: 

Definition 9.1.1:  “Euler’s constant” 

The Euler’s constant     is defined by            
 

 

 
          



 

59 
 

Divisibility 

 

 

NOTES 

 

 

  

Asymptotic Formulas  

 

Notes 

 

Definition 9.1.2:  

Let   be a real number and let f(x) be a function and g(x) >0 , then there is a 

constant m>0 , such that              , for all     . Then f(x) is said 

to be “big oh” of  g(x) 

               O(g(x)) 

Result: 

1. O(f(x)) +  O(f(x))= O(f(x)) 

 

Let g(x) =         , then there exists       such that |g(x)| 

         , for all     

Let              , then there exists      such that        
       , for all     

                          
                                

                 

       

   where         

                  

 O(f(x)) + O(f(x)) = O(f(x)) 

2.                         
 

 

 

 
 

 

Let g(x) =         , then there exists     such that        
      , for all     

 

      

 

 

             

 

 

           

 

 

 

 

     

 

 

             

 

 

 

                         

 

 

 

 

 

 

Definition 9.1.3: “Riemann Zeta function” 

The Riemann Zeta function is defined by 
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Theorem 9.2: 

 

If     we have: 

    
 

 
           

 

 
     , where   is Euler’s constant. 

    
 

  
  

    

   
                  , if        . 

    
 

             , if    . 

       
    

   
          , if    . 

 

Proof: 
For part (a): 

By Euler’s summation formula, 

                              

 

 

 

      

            

             

             
 

 
              

        
 

  
                       

 
 

 
     

   
 

 
  

 

 

           
 

  
    

 

 
                 

 

 

 

 
 

 
  

 

 
           

 

  
           

 

  
     

 

 
 

 

 

 

 

 

      

 

                                 

 
 

 
                

 

  
           

 

  
     

 

 
 

 

 

 

    

 

                
 

  
     

 

 
                                

 

 

 

                  
 

  
  

 

 

 

                 
 

  
      

 

  
      

 

 
 

 

 

 

 

 

                     



 

61 
 

Divisibility 

 

 

NOTES 

 

 

  

Asymptotic Formulas  

 

Notes 

 

 
 

 
          

 

 
    

 

 
 

   

 

 
 

 
          

 

 
 

   

 

   
   

  
 

 
     

   

     
   

     
 

 
   

                                                                 =A+0 

  
 

 
        

   

  
 

 
  

Where   is Euler’s constant. 

To prove part (b) 

By Euler’s summation formula, 

      

     

                       

 

 

 

 

                     

    

We take      
 

   with      and         
  

     in Euler’s summation 

formula, 

 
 

  
  

 

  
            

  

    
           

 

  

 

 

          

 

      

 

 
 

  
  

 

  
  

 

      

          
  

    
             

  

    
      

 

  
 

 

 

 

 

 

 

(                                
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           , 

 
 

  
 

    

   
            

   

 

Case (i): If s > 1, 

 
 

  

   

 
    

   
             

   
   

 
 

  

   

    
   

 
    

   
              

 
 

  
     

 

   

 

 

          
Case (ii): If 0 < s < 1, 

 

 
 

  
 

    

   
            

   

 

   
   

  
 

  
 

    

   
   

     
   

              

 

          
 

   
 

  
 

    

   
            

   

                 

To prove (c): 

 

We use (b) with s > 1 to obtain  

 
 

  
       

 

  
 

    

   
               

      

 

Since           
 

To prove (d): 

 

We take         in Euler’s summation formula with     and 
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9.5 The average order of d(n): 

Definition 9.1.4: 

If       
    

    
   , then      is said to be asymptotic to            .  

It is written by                    

Definition 9.1.5: 

A Lattice point is a point with integer coefficients. 

Theorem 9.3: For all     we have 

                    

   

 

                        

   

         

Where   is Euler’s constant and hence the average order of d(n) is      

Proof: 
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(      
 

 
               )  

     represents the rectangular hyperbola in the (q, d) plane . 

The sum in (1) is actually the number of lattice points on the 

rectangular hyperpola            
 

 
. 

For a fixed d, the sum is same as the number of lattice points in the 
rectangular hyperbola, then sum over all d             

              
 

 
      

     
 

 
      

 

                                

            
 

 
             

                          

                        

              

Taking limit and divided        on both side we  get, 

   
   

 
 

    

    

    
     

   
     

 

    
     

  
    

 
   

      

 
    

 
     

   

 

Hence the average order of       is      
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The sum (2) is equivalent to the number of lattice points in the region 

bounded by      ,     and      

The total number of lattice points in the region is equal to the number below 

the line       lus the number on the bisecting line segment. 
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  Average  order of     is      . 

9.6 The average order of the divisor functions      : 

Theorem 9.4: 

For all     then we have          
 

 
                    and 

hence the average order of          is  
   

  
  

Proof: 
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We know that        
 

  
          

    

      
 

  
 

 

  
 

 

  
   

  

 

 

   

 

(by Fourier series) 

       
    

  
   

           

   
   

 
 

     

    

   

  

      

   
   

 
     

 
 

   

   

  
 

 
     

 
 

   

  
         

   

 

  Average order of        is   
   

  
  as     

Theorem 9.5: 

If          and     then we have          
      

           

      

 Where              

Proof: 
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If                   

If                   

        
          

   
      

   

 

                  

Theorem 9.6: 

                                               

                                    

   

 

                                        

Proof: 

We have   
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The last term is        if     and      if     .  Since 

  
 

    
 

    

  
                               

   

 

This completes the proof. 

9.7 Exercises: 
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UNIT – X: LATTICE POINTS 

Struture 

10.1 Introduction 

10.2 Objectives 

10.3 The average order of       

      An application to the distribution of lattice points, visible form the 

origin  

10.5 The partial sums of a Dirichlet product 

10.6 Applications to       and      Another identity for the partial sums of 

a    Dirichlet product. 

10.7 Exercise 

10.1 Introduction:   

This unit initiates the concepts of average order of Euler totient function and 

it introduces the notion of lattice points and its application towards the 

distribution of lattice points visible from the origin , further it describes the 

partial sums of a Dirichlet product and it provides brief demonstration on 

Legendre’s identity and Mangoldt function. 

10.2 Objectives:  

The students will be able to  

 Identify the average order of  Eulers totient function 

 Describes the partial sums of a Dirichlet product 

 Determine the identity of Mangoldt function 

10.3 The Average order of       

Theorem:10.1     For x  1, we have       
 

                  so 

the average order of     is 
  

  . 

Proof: The method is similar to that used for the divisor functions.  

To  prove this theorem we need the following lemma. 

Lemma: Let f and g be the arithmetical functions and       
    

  
 
    and 

      
    

  
 
    then           

    

  
 
    where       

Proof:            
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   (n) 

                             = 
 

    
   (n) 

Hence the Lemma. 

Take                         in the above lemma Therefore 

      
    

  

 

   

           
    

  
  

 

  

 

   

 

   

              

                    
        
        

  

we know that,             
    

  
 
    

 
    

  

 

   

      
    

  

 

   

   

If s=2 , 
    

  
 
          

 
    

  
 
    

 

    
where   (2)=

  

 
 

 
    

  

 

   

 
 

  
 

 
    

  

   

  
    

  

   

 
 

    
 

 
    

  
 

   

 

    
  

    

  

   

 

                  
 

    
    

    

  

   

  

                 
 

    
     

 

 
                                                

                  
 

       
 

 
 ………………(1) 

                         We know that             
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                                    Hence the average of       
  

   

10.4 An application to the distribution of lattice points visible 

from the origin: 

The asymptotic formula for the partial sums of      has an interesting 

application to a theorem concerning the distribution of lattice points in the 

plane which are visible from the origin. 
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Definition 10.1.1  : Two lattice points P and Q are said to be mutually 

visible if the line segment which joins them contains no lattice points other 

than the end points P and Q. 

Theorem 10.3  : Two lattice points (a,b) and (m,n) are mutually visible if, 

and only if, a-m and b-n are relatively prime. 

Proof:  It is clear that (a, b) and (m, n) are mutually visible iff (a-m, b-n) are 

mutually visible from the origin. Hence it sufficies to prove the theorem 

when (m. n)=(0, 0). 

Assume that (a, b) is visible from the origin, and let d=(a, b). we wish to 

prove that d=1. If d   then a=d  , b=d   and the lattice points (     ) is 

on the line segment joining (0, 0) to (a, b).This contradicts the proof that 

d=1. 

Conversely, assume that (a,b)=1. If a lattice point (     ) is on the line 

segment joining (0, 0) to (a, b) we have 

                                 

Hence t is rational, so   
 

 
  where r, s are positive integers with (r, s)=1. 

Thus                                                   

So              But (s, r)=1 so,     and    . Hence s=1 since (a,b) =1. 

This contradicts the inequality       . Therefore the lattice point    (a, 

b) is visible from the origin. 

There are infinitely many lattice points visible from the origin and it is 

natural to ask how they are distributed in the plane. 

Consider a large square region in the xy-plane defined by the inequalities  

                 . Let N(r) denote the number of lattice points in this 

square, and let N(r) denote the number of lattice points in this square, and let 

      denote the number which are visible from the origin. The quotient 

            measures the fraction of those lattice points in the square 

which are visible from the origin.  

Theorem:10.4 The set of lattice points visible from the origin has density 
 

    

Proof : consider the large square region                 bounded by 

the lines      is dividing the axes in to 8 symmetrical regions. 
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The 8 lattice points are visible from the origin they are (1, 0), (1, 1), (0, 1), (-

1, 1), (-1, -1), (0, -1), (-1, 0) and (1, -1). X is bounded by the lines     
  and y is bounded by       . 

Let       denotes the number of lattice points visible from the origin . 

             

          

  

                  

          

  

                 

          

  

           

     

  

We know that           
   

             

           
   

  
            

   
    

  
           

The total number of lattice points in the square region is, 

              and              
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                                                      = 
 

  
 

10.5 The partial sums of a Dirichlet product : 

Theorem:10.5 Let f and g be arithmetical functions and let       and 

let              ,               and               then 

            
 

 
     also         

 

 
        . 

Proof:   Define       
        

          
  

Given               

         
 

 
 

   

 

             

        Let                                          
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Hence the theorem proved. 

Theorem:10.6   For      we have  

             
 

 
 

         

    
 

 
 

   

 

Proof:  Put g(n)=1 in theorem 10.5, 

           

   

 

                           

But      ,                       
 

 
     

             

   

 

       

      

          

   

 

                     
 

 
 

   

 

        

      

       
 

 
 

   

 

10.6 Applications to                

Theorem: 10.7 

For     we have   (i)       
 

 
       

                                  (ii)       
 

 
             

Proof:   (i) put             in theorem 10.6, we have 

      
 

 
 

   

       

      

 

    
 

 
 

   

 

                 

   

 

                             (ii)  Put f(n) =   (n) in theorem 10.6, we have 

      
 

 
  

   

      

      

 



 

77 
 

Divisibility 

 

 

NOTES 

 

 

  

Congruences 

 

 

Notes 

 

       

   

 

                                                       

             

           

Note: The sums in this theorem can be regarded as the weighted average of  

the functions               

Theorem: 10.8  For all    , we have    
    

          with equality 

holding only if       

Proof: If       By previous theorem, 

      
 

 
 

   

   

                                                              1 =       
 

 
   

 

 
      

   
    

 
   

        
 

 
 

   

 

                                                      
    

    =  1 +       
 

 
     

   
    

        =            
 

 
      

           
 

 
 

   

  

      
 

 
 

   

 

                                                     
 

 
 

     

 

                                                    

     

 

                                                       

      =    
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Theorem: 10.9   Legendre’s identity   

For                         
    where the product is extended over 

all primes     and         
 

    
    

Proof:     We know that        
 

 
             

                                 Put                       
 

        

                                                           
 

  
 

 

   
   

 

                                              

   

 

   Where,        
 

    
    

                                           

   

 

                                    

   

  

           

   

 

Hence the theorem proved. 

Theorem: 10.10    

For                                                

      
 

 
                 

   

 

Proof:  Put f(t)=log(t) in Euler summation formula with y=1 

                       
 

 

 

 

 

      

                 

              
 

 

 

 

            

Adding 1 on both sides we get, 

                               
 

   

 

                                             ……………(1) 
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Hence the theorem proved. 

Theorem:10.11     For      we have        
 

 
                

Proof:    WKT,         
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We know that,                                 

                                    

         
 

 
 

   

            

Hence the theorem proved. 

Theorem:10.12       If a and b are the real numbers such that      then  

                  
 

 
         

 

 
 

         
    

          

 

Proof:   Let                             and 

             where      and f, g are arithmetic functions. 
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………..(1) 

Since a and b are positive real numbers such that ab=x then (a, b) is a point 

on the rectangular hyperbola qd=x 

The sum H(x) in (1) is extended over lattice points in the first quadrant of 

(q, d) plane, below the rectangular hyperbola between the two lines d=1, 

q=1. 

Since the point (a, b) splits the region in to three parts A, B and C. 

Now the sum in the region     is, 

                  
 

 
 

  
 

 
      

    

 

                                    
 

 
 

  
 

 
   

 

                          
 

 
 

   

 

                        
 

 
 

   

 

The sum in the region     is, 

                  
 

 
 

  
 

 
      

    

 

                              
 

 
 

   

 

                           
 

 
     

   

 

The sum in the region B is, 

                    

          

 

                                       

      

 

                         

Thus,                    
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                                                      = The sum in the region     ) +  The 

region       – The region B 

                  
 

 
         

 

 
 

         
    

          

Hence the theorem proved. 

10.7 Excercise: 

1. Let                       Prove that    is multiplicative and 

that                    

2. Prove that              
 

        where the sum is over those 

divisors of n for which      

3. Prove that                  
 

      , where  
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UNIT XI: CONGRUENCES 

Structure 

11.1 Introduction 

11.2 Objectives 

11.3 Definition and Basic properties of congruences  

11.4 Residue classes and complete residue systems  

11.5 Linear congruences  

11.6 Reduced residue systems and the Euler - Fermat theorem. 

11.7 Exercise 

11.1 Introduction: 

 A congruence is nothing more than a statement about divisibility. The 

theory of congruences was introduced by Carl Friedreich Gauss. Gauss 

contributed to the basic ideas of congruences and proved several theorems 

related to this theory. We start by introducing congruences and their 

properties. We proceed to prove theorems about the residue system in 

connection with the Euler ϕ-function. 

11.2 Objectives:  

The students will be able to  

 Describe the properties of Congruences 

 Determine Euler Fermat theorem 

 Identify the reduced residue system 

11.3 Definition and basic properties of Congruence: 

Definition 11.1.1: 

Given integers       with     , we say that   is congruent to   modulo 

 , we write 

                          

  is called the modulus of the congruence. 

Note: 
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Examples: 

                  
        

    

                  
      

    

Theorem 11.1: 

Congruence is an equivalence relation , That is 

               (reflexive) 

                                (symmetry) 

                                            (transitivity) 

Proof: 

                 

           

                                 

                  

                                         

                         

Theorem 11.2: 

If             and            then we have  

                                                

                 

                                              

                     

                                                  

Proof: 

    Given            and            

 
           

    we have 

                    

(using linear property) 
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Consider                                  

                            

Hence              

                             ,                     
       

Given                   

                               

                            

          

                              

Where   is a polynomial 

                        

                        

                        

                                        

                                                  

(by (iii)) 

                         

Hence                  

Theorem 11.3: 

If    , then          )                               

Proof: 

Assume that                  

Now we take                                 

Conversely, Assume that               

To prove that:             
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(by cancellation law of divisibility) 

             

 

Theorem 11.4: ‘Cancellation Law’ 

If              and if           then          
 

 
  

Proof: 

Assume that              and if          

To prove:         
 

 
  

Given                      

          

Given            
 

 
 

 

 
  

         ’                                    
  } 

 
 

 

 

 
         

 

 
       

Hence         
 

 
  

Theorem 11.5: 

Assume            if      and      then     

Proof: 

Let                   

Given     and         

 (by transitive property) 

         

                       

Let                             

     

Theorem 11.6: 

If           then            . In other words numbers which are 

congruent mod m have the same     with n 
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Proof: 

Assume that            

Let                                   

     ,     then    ( by theorem 11.5) 

                            

Now                   

Then     (by theorem 11.5) 

                                 

From (1) and (2) we get  

                                 

Theorem 11.7: 

If            and if           then     

Proof: 

To prove that     

Using congruent definition         

           more over         

            more over         

                  

     

Theorem 11.8: 

We have                                 give a same remainder 

when divided by m. 

Proof: 

By division algorithm  

Then there exists a positive integer                            
                                          

Now,                   

                               

(where t is an integer) 
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               (where          ) 

         (where k is a integer) 

                   

                         

Theorem 11.9: 

If            and           where        , then   
          

Proof: 

Given             

           

By definition of congruence            

                         

By the divisibility property         

            

11.4 Residue classes and complete residue systems: 

Definition 11.1.2: 

“Residue class” 

Consider the fixed modulo       the residue class is denoted by    .  The 

set of all integers   such that           . 

                           

                          

                          

Example: 

              

                            

                       

Theorem 11.10: 

For a fixed modulo    , we have  

                        

                                                                      



 

89 
 

Divisibility 

 

 

NOTES 

 

 

  

Congruences 

 

 

Notes 

 

                                                                                            

Proof: 

    Assume       

                              

                               

           

                       

                          

                   

    Assume that   and   are in same residue class 

                             

                                            

(By symmetric property) 

From (1) and (2) 

               (since transitive property) 

Conversely, Assume that            

                               (By symmetric property) 

We claim that, two integers   and   are in same residue class. 

Suppose          

                                    

                                    

From (3) and (4) 

                                    

(6)       

Which is a    

Hence two integers   and   are in same residue class. 

               are two residue class.             

To prove that: the residue class          are disjoint  

               

Suppose that            
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Let                              

By the definition of residue class  

                            (by symmetry) 

                 

From (1) and (2)  

                       (by (iii)) 

Which is a    

Let   be any integer  

By division algorithm there exists         such that            
          

                                 

            

Hence the union of all m residue class. 

Definition 11.1.3: “Complete Residue System” 

A set of m representatives, one from each of the residue classes 1, 2,…,m is 

called a complete residue system modulo m. 

Example: 

Any set consisting of m integers, incongruent mod m is a complete residue 

system mod m. 

For example (1, 2,…, m); (0, 1, 2, …., (m-1)); {1, m+2, 2m+3, 3m+4, ……, 

  } 

Theorem 11.11: 

Assume that          if                is a complete residue system 

mod m so is                   

Proof: 

Given                       is a complete residue system mod m 

By definition of              

To prove:                  is a complete residue system 

That is to prove                 

Suppose                

Since         
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W             

                

11.5 Linear congruences: 

Definition 11.1.4: “Linear congruence” 

Given integers                and   is an unknown integer then the 

linear congruence is of the form             is said to a linear 

congruence  

Example: 

            

                      

Theorem 11.12: 

Assume that         the linear congruence             has exactly 

one solution. 

Proof: 

Given         

To prove:             has exactly one solution 

Now, Assume that             has an solution 

Since        , by using theorem 11.11 

            is an complete residue system 

             is the product of  a 

Since        , 

           is an complete residue system 

The linear congruence             has exactly one solution. 

Theorem 11.13: 

Assume          then the linear congruence             has a 

solution      
   

Proof: 

If a some exists then     

Since     and       
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Conversely, if      is congruence 

 

 
          has a solution  

 

 
 

 

 
   and  this solution is also a 

solution of linear congruence. 

Theorem 11.14: 

Assume         and suppose that      then the linear congruence 

            has exactly   solutions mod m, there are given     
 

 
   

  

 
           

 

 
  where   is the solution, unique modulo 

 

 
 of 

the linear congruence 
 

 
  

 

 
     

 

 
  

Proof: 

    The solution of             is equivalent to the solution of  
 

 
  

 

 
        

Let t be the solution of  
 

 
  

 

 
        

 

 
  

 

 
        

 

 

  

 
 

 

 
  

 
  

 
 

 

 
 

 

 
                 

    

 
 

  

 
                     

 be the solution of             is equivalent to the solution of  

 

 
  

 

 
        

     To prove      
 

 
   

  

 
           

 

 
   has exactly d solution 

of modulo m. 

Suppose that   
  

 
   

  

 
 are the disjoint solution of             

    
  

 
                      and 

    
  

 
                      

      
  

 
                             (by commutative) 

From (1) and (2) 
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(By theorem 11.7) 

    

Which is a    to   
  

 
   

  

 
are the disjoint solution of    

         

      
 

 
   

  

 
           

 

 
has exactly d solution of modulo m. 

      To prove there is no solution except      
 

 
   

  

 
         

  
 

 
 

Let   be the solution of            

                              

Since t be the solution of            

                                                        

From (3) and (4) 

                              

 
 

 

 

 
       

By Euclid’s lemma: 
 

 
              

 

 
 

 

 
     

     
 

 
                          

By Division algorithm, there exists an integers        such that       
               

              
 

 
  

Multiply m on both sides        
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Hence there is no solution except      
 

 
   

  

 
           

 

 
 . 

 

Theorem 11.15: 

If         there exists integers         such that         

Proof: 

The linear congruence             has a solution  

Hence there is an integer   such that         

This gives us         as required. 

Note: Geometrically the pairs      satisfying         we are lattice 

points lying on a straight line the x coordinate of each of there points is a 

solution of the congruence                      

                         

11.6 Reduced residue systems and the Euler-Fermat theorem: 

Definition 11.1.5: “Reduced Residue System” 

A reduced residue system modulo m we mean any set of      integers 

incongruent modulo m each of which is relatively prime to m. 

Example:        

Reduced residue system            

Note:     is a Euler totient function. 

Theorem 11.16: 

If                  is a reduced residue system modulo m and if 

        then                      is also a reduced residue system 

modulo m. 

Proof: 

Given                   are reduced residue system modulo m. 

Assume       , 

In                       no two of the numbers     are congruent 

modulo m. 

By definition,          
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Since                       

                   are reduced residue system modulo m. 

Theorem 11.17: “Euler- Fermat Theorem” 

Assume that          then we have                

Proof: 

If                  is reduced residue system modulo m (by definition) 

             

since        , then                      is also reduced residue 

modulo m. 

(By theorem 11.16) 

The product of set of integers in the first set is congruent to product of those 

in the second set. 

                                                  

                                            

               

                   (By cancellation law) 

Hence the proof. 

Theorem 11.18: 

If a prime p does not divide a then               

Proof: 

Given p does not divide a and we know that (a, p) =1 By 

usingEuler’sfermat’s theorem, 

               …………….(5)  

         whenever p is prime 

              

Hence proved. 

Theorem 11.19: 

 For any integer a and any prime p, we have              

Proof: 

Case 1: If p∣a     a         …….(6) 
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                        0          ………(7)            

   From (6) and (7) we have   

                                     a              (by  transitive) 

                  (by symmetric) 

Case 2: I                                     

                                             ∕                    

                                                            . 

                                                        Hence proved. 

Theorem 11.20: 

 If (a, m) =1 the solution (unique mod m) of the linear congruence   ax 

         is given by x                 

Proof: 

Given  x                 is the solution of the linearcongruence      
ax           . 

a (        )          

 a                   

                

                

              ’  Fermat theorem,  The solution is unique modulo m. 

 

11.7 Exercises: 
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BLOCK IV: POLINOMIAL 

CONGRUENCES AND QUADRATIC 

RESIDUES 

 

UNIT-XII: APPLICATIONS OF 

CONGRUENCES 

Structure 

12.1 Introduction 

12.2 Objectives 

12.3 Polynomial congruences modulo    agrange’s theorem 

12.4 Application of Lagrange’s theorem 

12.5 Simultaneous linear congruences. 

12.6 The Chinese remainder theorem 

12.7 Application of the Chinese remainder theorem. 

12.8 Exercise 

12.1 Introduction: 

 In this unit, we will discuss more than one linear congruences. Under 

certain conditions, we will show that such simultaneous congruences have a 

solution. We will also discuss the uniqueness of such a solution. For solving 

such congruences, thereis a well-known method known as the Chinese 

Remainder Theorem. 

 

12.2 Objectives:  

The students will be able to  

 Solve linear congruences 

 Describe the Lagranges theorem 

 Determine the Chinese remainder theorem 

12.3: POLYNOMIAL CONGRUENCES MODULO P: 

The fundamental theorem of algebra states that every polynomial f of degree 

n≥1 the equation f(x)=0 has r solutions among the complex numbers. There 

is no direct analog of this theorem for polynomial congruences. For 

example,we have seen that the some linear congruences have no solutions 
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some have exactly one solution and some have more than one. Thus, even in 

this special case there appears to be no simple relation between the number 

of solution and the degree of the polynomial. However, for congruences 

modulo a prime we have following theorem of Lagrange. 

Theorem 12.1(Lagrange) 

Given a prime p, f(x)=            be a polynomial of degree n with 

integer coefficient such that   is not congruent to 0(mod p). Then the 

polynomial congruence   f(x)≡0 (mod p) ……………(1) has at most r 

solutions. 

Proof: 

Let us given f(x)≡0(mod p).  Then we have to prove by induction on n, 

when n=1, The congruence is linear. c₁x+c˳≡ (mod p) since c₁ is not 

congruent to 0(mod p) we have (c, p) =1 and there is exactly one solution.  

Assume that the theorem is true for polynomial of degree n-1. 

Assume also that the congruence (1) has n+1 incongruence solution mod p 

(say)   ,  …………,   .  Where f (  )≡0(mod p) for every i=0,1, 2,…..n. 

we shall obtain a contradiction we have algebraic identity. 

   f(x)=              ……………….(2) 

f (  )=             ……………….(3) 

 f(x)-f(  ) =                  
            

  ……………(4) 

                 =          
   

    

                 =                  
     

    

                = (x-  )            
     

    

 f(x)-f (  )= (x-  ) g(x), where g(x) is a polynomial of deg n-1 with integer 

coefficient and with leading coefficient     

Thus, we have  

f (  )-f (  )= (  -  ) g (  ) ≡0(mod p) 

since,f (  )-f (  )≡0(mod p) But is   -     0 (mod p) if k≠0 

So must have g (  )≡0(mod p) for every k≠0   By this n incongruent 

solution of modulo p.Which is contradiction to our hypothesis. 

12.4 Applications of Lagrange’s theorem 

Theorem 12.2  

 If  f(x)=  +    +……+       is the polynomial of degree n with integer 

coefficient  and if the congruence f(x)         has more than n solution 

when p is a prime .  Then every coefficient of f is divisibly by p. 
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Proof: 

If some coefficient of f is not divisible by p. then k   and the congruence 

 f(x)          . we take  

                f(x)=  +     +……+     
          +…. +     

  

Therefore   +     +……+     
             has more than k solution. By 

Lagrange’s theoremP divides    

Which is a contradiction to our assumption. 

Therefore, every coefficient of f is divisible by p. 

 

Theorem 12.3 

  For any prime p all the coefficient of the polynomial f(x)=(x-1) (x-2) 

……..(x-(p+1)) is divisible by p. 

Proof:     

Given f(x)=(x-1) (x-2) ……..(x-(p+1))-       

                                              f(x)=g(x)-h(x) 

                                               g(x)=(x-1) (x-2)..........(x-(p+1)) 

                                                h(x)=    -1 

                                        The roots of g are 1, 2,...p-1. 

 Hence satisfy the congruence equation    

                                        g(x)          

             Let h(x) =    -1     suppose (a, m) =1,                (By 

Euler’sformatstheorem) 

                    Assume (x, p) =1, we have                 

By Euler’s Fermat’s theorem,  

         ) whenever p is a prime 

              

                

                                    h(x)          

                                    f(x)=g(x)-h(x)          

   f(x)           

               If f(x) has degree (p-2) then also f(x)          
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  All the coefficient f(x) is divisible by p. 

Theorem 12.4: (Wilson’s Theorem) 

For any prime p we have (p-1)             and  prove its converse. 

Proof: 

 Consider the polynomial are  

                                (x-1) (x-2) .......(x-(p-1))-     +1)    

The constants terms of the polynomial are  

                 -1, -2, -3.......(-(p-1)) +1= (-1) (1), (-1) (2), .........(-1) (p-1) +1                                                     

                                               =       (p-1)! +1 

Since all the coefficient must be divisible by p 

                        P |        (p-1)! +1 

                         P | (p-1)! +1 [ since, where p is prime (p-1) is even] 

                        (p-1)! +1           

                         (p-1)!           

Conversely,  For n   

 (n-1)!             

(n-1)! +1          

n | (n-1)! +1 

To prove n is prime 

Suppose n is composite 

                          n=cd 

                           d |n ..............(10) 

since n is the divisor such that 1<d<n 

                        d=1,2, .........(n-1)then d | (n-1)!..............(11) 

From (10) and (11) 

                             n | (n-1)! 

                             n          

Which is a contradiction  

   n is prime. 
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Theorem 12.5 (Wolstenholme’s) 

  For any prime p   we have              
    

Proof: 

The sum            
      is the sum of the product of the number 1,2, 

.......(p-1) taken (p-2) at a time. This sum is also equal to the coefficient of x 

in the polynomial. 

                      g(x)=(x-1) (x-2) ................(x-(p+1)). 

  g(x) can be written in the form of  

    g(x)=            +                 
               

where the coefficient of     is the     elementary symmetric function of the 

roots that is the sum of the product of the numbers 1,2.... (p-1) taken k at a 

time. (By theorem 12.7) each of the number                   is divisible by 

p 

                   we have to show that     is divisible by     

The product of g(x) shows that g(p)=(p-1)! 

                (p-1)! =                                  

Cancelling (p-1)!  And reducing the equation modulo   ,  we get  

                             Since p>     p      (mod   ) 

And hence               as required. 

 

12.5 SIMULTANEOUS LINEAR CONGRUENCES. 

Theorem 12.6:(The Chinese remainder theorem) 

Assume            are positive integers relatively prime pairs (   , 

  )=1, i≠k. Let           are arbitrary integers. Then the system of 

congruences, 

                                x             

                                 x            

  

                                  x           . 

Has exactly only one solution modulus              

Proof: 

Let M=            and            
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By Euclid’s extended algorithm  

            Let      be a reciprocal of    

                 ......................(12) 

Let x=      
               (k=1,2,....r) 

      X=                 

Hence x satisfies every system of congruences modulo       

UNIQUENESS: 

Let x and y be the two solutions of system congruences   

                            x            .............(13)  

                            y             

             ...............(14) (by symmetric) 

From (13) and (14) 

                              x           (by transitive) 

since     are  relatively prime in pairs. 

                                x                     

                                 x           

since congruence is an equivalence relation  

                                    x=y. 

  

 Theorem 12.7:  

  Assume           are relatively prime in pairs. Let                be  

arbitrary integers and let           satisfy (     )=1 for k=1,2,...r. then the 

linear system of congruence                          

  x             

  x            

  

   x           . Has exactly solution modulo             

Proof: 

Let   denote the reciprocal of   modulo   .  This exists since (     )=1.  

Then  the  congruence  x                is equivalent to the congruence 

x              .Now apply theorem 12.10. 
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12.6: APPLICATIONS OF THE CHINESE REMAINDER 

THEOREM: 

Theorem 12.12: 

 Let f be a polynomial with integer coefficients, let           be positive 

integers relatively prime in pairs and let m=         .   Then the 

congruence  

                    f(x)         ....................(15) 

has a solution if and only if each of the congruences  

                     f(x)            (i= 1,2......r) ............(16) has a solution.  

Moreover, if v(m) and v (  ) denote the number of solutions of (1) and (2), 

respectively, then 

                     v(m)=v (  ), v(  ),v(  )    .............(17) 

Proof: 

If f(a)           then f(a)            for each i.  Hence every 

solution of (15) is also a solution of (16). 

     Conversely, let    be a solution of (16).  Then by Chinese remainder 

theorem there exists an integer a such that 

                for i=1,2,...,r.     ..............(18) 

so 

                      . 

   Since the moduli are relatively prime in pairs, we also have f(a) 
         .  Therefore, if each of the congruences in (16) has a solution, so 

does (15). 

We also know, by theorem 12.10, that each r-tuple of solutions 

(          ) of the congruences in (16) gives rise to a unique integer a 

mod m satisfying (18).  As each    runs through the v(  ) solutions of (16) 

the number  of integers a which satisfy (18) and hence (16) is 

v(  ),v(  ),...,v(  ).  This proves (17). 

Theorem 12.13: 

The set of lattice points in the plane visible from the origin contains 

arbitrarily large square gaps.  That is, given any integer k>0 there exists a 

lattice point (a, b) such that none of the lattice points (a+r, b+s),      
       , is visible from the origin. 

Proof: 

Let            be the sequence of primes.  Given k>0 consider the     

matrix whose entries in the first row consists of the first k primes, those in 
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the second row consists of the next k primes, and so on.  Let    be the 

product of the primes in the     row and let    be the product of the primes 

in the     column.  Then the numbers    are relatively prime in pairs as are 

the   . 

Next consider the set of congruences 

 x            

 x            

  

x           . 

This system has a solution a which is unique mod          .  Similarly, 

the system  

y             

 y            

  

 y           . 

has a solution b which is unique mod                     . 

 Now consider the square with opposite vertices at (a,b) and (a+k,b+k).  Any 

lattice point inside this square has the form 

       (a+r, b+s), where 0<r<k, 0<s<k, 

And those r=k or s=k lie on the boundary of the square.  We now show that 

no such point is visible from the origin.  In fact, 

              , and              

so, the prime in the intersection of row r and column s divides both a+rand 

b+s.  Hence a+r and b+s are not relatively prime, and therefore the lattice 

point (a+r , b+s) is not visible from the origin. 

12.7 EXERCISES: 

1.Prove the converse of Wilson’s theorem: If (n-1)! +1  (mod n), then n is    

prime if n>1. 

2. Find all positive integers n for which (n-1)! +1 is a power of n. 
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3. If p is an odd prime, let q=(p-1)/2. Prove that             0(mod p). 

This gives q! As an explicit solution to the congruence               

when p         , and it shows that q! =  (mod p) if p         . No 

simple general rule is known for determining the sign. 

4.If p is odd p>1,prove that                    
     

  
(mod p)  and 

                  
     

  
(mod p)
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UNIT-XIII DECOMPOSITION 

PROPERTY 

Structure 

13.1 Introduction 

13.2 Objectives 

13.3 Polynomial congruences with prime power moduli  

13.4 The principle of cross classification  

13.5 A decomposition property of reduced residue systems 

13.6 Exercise 

 

13.1 Introduction:   

Generally, Solving linear congruences is fundamental in many parts of 

number theory. The generalization, solving polynomial congruences, is 

perhaps not as basic but is still an important topic. For the polynomials 

students have worked with in the past, namely polynomials with rational, 

real, or complex coefficients, the number of solutions in complex numbers is 

at most the degree of the polynomial. How to solve polynomial congruences 

mod primes and mod prime powers, the Chinese Remainder Theorem allows 

solving polynomial congruences for composite moduli. 

 

13.2 Objectives: 

 The students will be able to  

 Analyse polynomial congruence 

 Describe the principle of cross classification 

 Determine the decomposition property of reduced residue system 

 

13.3 POLYNOMIAL CONGRUENCES WITH PRIME 

POWER MODULI: 

Theorem 12.12 shows that the problem of solving a polynomial congruence 

f(x)           can be reduced to that of solving a system of congruences   

                              f(x)         
    (i=1,2,.....r)  

 where m=  
  .........  

  .  In this section we show that the problem can be 

further reduced to congruences with prime moduli plus a set of linear 
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congruences.  Let f be a polynomial with integer coefficients and suppose 

that for some prime p and     the congruence 

                                f(x)          ......................(1) 

has a solution, say x=a, where a is chosen so that it lies in the interval 

0       

             This solution is also satisfying each of the congruences  

                                f(x)           for each       in particular, a 

satisfies the congruence  

                        f(x)            ......................(2). 

Now divide a by        and   write   a=q    +r .....................(3) where 

0         

The remainder r determined by (3) is said to be generated by a.  Since  

r              the number r is also solution of (2).  In other words, every 

solution a of congruence (1) in the interval0      generates a solution r 

of congruence (2) in the interval   

0         

Now suppose we start with a solution r of (2) in the interval 0        

and ask whether there is a solution a of (1) in the interval 0       which 

generates r.  If so, we say that r can be lifted from     to   .  The next 

theorem shows that the possibility of r being lifted depends on f(r) mod    

and on the derivative f       mod p. 

Theorem 13.1: 

 Assume      and let r be a solution of the congruence f(x) 
          ............(4) lying in the interval 0        . 

a)Assume f       (mod p).  Then r can be lifted in a unique way from 

    to   .  That is, there is a unique a in the interval 0       which 

generates r and which satisfies the congruence 

                         f(x)          ................(5)  

b)Assume f         mod p).  Then we have two possibilities: 

b1) If f(x)           , r can be lifted from      to   in p distinct ways. 

b2) If f(r)             r cannot be lifted from    to   . 

Proof: 

If n is the degree of f, we have the identity (Taylor’s formula) 

f(x+h) =f(x)+ f   (x)h +
      

  
  +........+

     

  
  .......(6) 
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for every x and h. We note that each polynomial           has integer 

coefficients.  Now we take x=r in (6), where r is a solution of (4) in the 

interval 0       , and let h=q     where q is an integer to be specified 

presently. Since     the terms in (6) involving    and higher powers of h 

are integer multiplies of      Therefore  (6) gives the congruence  

f(r+q    )     +                  

 

since r satisfies (4) we can write f(r)       for some integer k and the last 

congruence becomes  

f(r+q    )     (r)+k}             

Now let   

                      a=r+q    ...............(7).                     

 Thensatisfies the congruence (23) if and only if q satisfies the linear 

congruence  

                     q     +k≡ 0(mod p).............(8)  

If                  this congruence has a unique solution q mod p and if 

we choose q in the interval 0     then the numbers a is given by(7)  will 

satisfy (5) and will lie in the interval 0       

                 On the other hand, if                 then (8) has a solution 

q, if and only if,p|k that it is iff f(r)        ).  If p k there is no choice of 

q to make a satisfy (5).  But p|k then the p values q=0,1,.........,p-1 give p 

solution a of (5) which generate r and lie in the interval 0        This 

completes the proof. 

13.4 THE PRINICIPLE OF CROSS-CLASSIFICATION: 

Some problems in number theory can be dealt with by applying a general 

combinatorial theorem about sets called the principle of cross-classification.  

This is a formula which counts the number of elements of a finite set which 

do not belong to certain prescribed subsets            . 

NOTATION:    If  T is a subset of S, we write N(T) for number of elements 

of T.  We denote S-T the set of those elements of S which are not in T.  

Thus  

                                    S    
 
    

    Consists of those elements of S which are not in any subsets of 

              For brevity we write               for the intersections 

                  respectively. 
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Theorem 13.2: 

 If             are given  subsets of a finite sets, the N(S    
 
   )=N(s)- 

           +               -

                   +........     N(           ). 

Proof: 

If   T S ,  Let       denotes the number of elements in T which is not in 

any of subsets              with        being simply N(T).  The elements 

are enumerated by          falls into two disjoint sets.  These which are not 

in S which are in   .  Then we have,          =                . 

Hence,        =                  ........(9) 

We take T-S 

      =                  ...............(10) 

In equation (28) to express on each term on right interms of     (s) 

        =                   

         =                    

      =                    

                    =                                           

Proceeding like this we obtain, 

               N(  S    
 
   )=  (s)-             +                -

                    +........       (           ).............(11) 

Applying r = n and   =N in (11) This gives the required formula.  

EXAMPLE: 

  The product formula for Euler’s totient can be derived from the cross-

classification principle.  Let                denote the distinct prime divisors 

of n.  Let s={1,2,3,.....n} and    be the subset of S consisting of those 

integers divisible by   .  The numbers in S relatively prime to n are those in 

none of the sets               , So  

            

 

   

  

If  d|n there are n/d multiples of d in the set S.  Hence 

     N(  )=
 

  
 , N(    )=

 

    
,..................N(              )=

 

              
, so the 

cross classification principle gives us  

        
 

  

 
   + 

 

    
         ............+      
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= n 
    

      = n    
 

     . 

     The next application of the cross-classification principle counts the 

number of elements in a reduced residue system mod k which belong to a 

given residue class r mod d, where d|k and (r, d) =1. 

Theorem 13.3: 

Given integers r, d and k such that d|k, d>0, k   and (r, d) =1. Then the 

number of elements in the set  

                             S={r+td:t=1,2,......k/d}   

Which are relatively prime to k is 
    

    
  

Proof:  

If a prime p divides k and r+td then p d, otherwisep|r, contradicting the 

hypothesis (r, d) =1.  Therefore, the primes which divide k and elements of 

S are those which divide k but do not divide d. Call them                and 

let  

  =               

Then the elements of S are relatively prime to k are those not divisible by 

any of these primes. Let  

  ={x:x           }  (i=1,2,3......,m). 

If x    and x=r+td then r+td           . since       there is a unique 

mod   with this property, therefore exactly one t in each of the intervals 

[1,  ],[         ],.......[(q-1)  +1,q  ] where q  =k/d. Therefore  

     =
   

  
. 

Similarly, 

                    N(    )=

 

 

    
,..................N(              )=

 

 

              
 

Hence by the cross-classification principle the number of integers in S 

which are relatively prime to k is  

 

=  
 

 
 

    

       = 
 

 
    

 

      =
     

 

     

     
 

     
  =

    

    
. 

13.5  A DECOMPOSITION PROPERTY OF REDUCED 

RESIDUE SYSTEMS: 

As an application of foregoing theorems, we discuss a property of reduced 

residue system which will be used in a later chapter we begin with a 

numerical example. 
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                               Let S be a reduced residue system mod 15, say 

                 S= {1,2,4,7,8,11}. 

We display the 6 elements of S in a 3   matrix as follows: 

  
  
   

 

                         Note that each row contains a reduced residue system mod 3 

and the numbers in each column are congruent to each other mod 3.  This 

example illustrates a general property of reduced residue described in 

following theorem. 

Theorem 13.4: 

Let S be a reduced residue system mod k and let d>0 be a divisor of k.  Then 

we have the following decomposition of S: 

 a)    S is the union of  
    

    
   disjoint sets, each of which is  reduced residue 

system mod d. 

 b)     S is the union of      disjoint sets, each of which consists of    
    

    
 

numbers congruent to each other mod d.   

Note:  In the foregoing examples, k=15 and d=3.  the row matrix 

represents the disjoint set of part(a), and the column represents the 

disjoint set of part(b). If we apply them to the divisor d=5 we obtain the 

decomposition given by a matrix  

   
     

 

Each row is reduced residue system mod 5 and each column consists of 

numbers congruent to each other mod 5. 

Proof: 

First, we prove that the properties (a) and (b) are equivalent.  If (b) holds we 

can display the      element of s as a matrix using the     disjoint sets of 

(b) as columns. The matrix has 
    

    
                                  system mod d, and these are the 

disjoint sets required for part (a). Similarly, it is easy to verify that (a) 

implies (b). Now we prove (b). Let    be a given reduced residue system 

mod d and suppose r   .  We will prove that there are at least 
    

    
integers 

n in S distinct mod k, such that n         .  Since there are      values 

of r in     and        integers in S, there can’t be more than 
    

    
  such 

numbers in n, so this will prove part(b). 

 The required numbers n will be selected from the residue classes mod k 

represented by the following k/d integers: 
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r,  r+d, r+2d,......., r+
 

 
d. 

These numbers are congruent to each other mod d and they are incongruent 

mod k.  Since (r, d) =1, theorem 12.16 shows that 
    

    
  of them are relatively 

prime to k, so this completes the proof. 

13.6 EXERCISES: 

 1.   Let n be a positive integer which is not a square. Prove that for every 

integer a is relatively prime to n there exists integers x and y satisfying 

ax y (mod n) with 0<x<   and 0<|y|<   

2. Let p be a prime p          let q=(p-1)/2 and let a=q! Then prove that 

there exist positive integer x and y satisfying 0<x<   and 0<y<    such 

that          (mod p). 

3.For the x and y in (2) prove that p=     . This shows that every prime 

p  (mod 4) is the sum of two squares. 

4. prove that no prime p  (mod 4) is the sum of two squares.
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UNIT-XIV: QUADRATIC RESIDUES 

AND QUADRATIC RESIPROCITY LAW 

Structure 

14.1 Introduction 

14.2 Objectives 

14.3 Legendre’s Symbol and its properties  

14.4 Evaluation of       and        

14.5 Gauss’s Lemma  

14.6 The quadratic reciprocity law  

14.7 Applications of the reciprocity law  

14.8 The Jacobi symbol  

14.9 Applications to Diophantine Equations. 

14.10 Exercise 

14.1 Introduction:  

Here we will introduce quadratic residues modulo an integer n.The quadratic 

residues of n are the integers which are squares modulo n. We will 

particularly study quadratic residues modulo an odd prime p. We will 

discuss Euler’s criterion, which specifies when an integer is a quadratic 

residue modulo p. Whether an integer is a quadratic residue modulo p is 

indicated by a symbol called Legendre’s symbol. We will also discuss 

properties of Legendre symbol. 

14.2 Objectives 

: The students will be able to  

 Identify the Legendres symbol 

 Determine the application of reciprocity Law 

 Describe the applications of Diophantine equations 

 Definition14.1.1:  Quadratic Residues: 

     Let p be an odd prime and n   0 (mod p) consider the quadratic 

congruence x
2  n (mod p). The value of n for which the congruence has a 

solution is called residues mod p(nRp) and those n for which the congruence 

has no solution is called quadratic non-residues mod p (n  p). 

Example: 

1. To find the quadratic residues modulo 11. 

Case 1: 
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Here p = 3, n = 1,2  

x
2  1 (mod 3) 

1
2  1 (mod 3) has a solution 1R3 

x
2  2 (mod 3) has no solution 2  3 

Case 2: 

Here p = 7, n = 1,2,3,4,5,6. 

x
2  1 (mod 7) has a solution 1R7 

x
2  2 (mod 7) has a solution 2R7 

x
2  3 (mod 7) has no solution 3  7 

x
2  4 (mod 7) has a solution 4R7 

x
2  5 (mod 7) has no solution 5  7 

x
2  6 (mod 7) has no solution 6  7. 

P 3 5 7 11 13 

nRp 1 1, 4 1, 2, 4 1, 3, 4, 

5, 9 

1,3,4,9,10,12 

n  p 2 2, 3 3, 5, 6 2, 6, 7, 

8, 10 

2, 5, 6,7, 8,11 

 

Theorem: 14.1 

 Let   be an odd prime. Then every reduced residue system mod p contains 

exactly  
   

 
  quadratic residues and exactly  

   

 
   quadratic non-residue 

classes containing the numbers 1
2
, 2

2
,…, 

   

 
 

 

.
 

Proof: 

The reduced residue system mod p is {1, 2,.., 
   

 
 ,…, p-1} 

Claim:  

The numbers 1
2
, 2

2
,…, 

   

 
 

 

 are distinct (incongruent) mod p. 

To prove that if 1≤ x, y ≤ 
    

 
  then  x

2  y
2
 (mod p) for some x ≠ y 

Suppose x
2  y

2
 (mod p) 

  x
2
 -y

2  0 (mod p) 

  p |x
2
 -y

2   p | (x+y) (x-y) 

  p| (x+y) or p| (x-y) 

 Since 1 ≤ x ≤ 
    

 
   and 1 ≤ y ≤ 

    

 
 

    2 ≤ x+y ≤ p-1 < p     x+y < p  

  p| (x+y) 

Since p | (x-y) and 0 ≤ |x-y| ≤ p-1 < p       
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    x  y (mod p) 

   x = y  

 Which is contradiction to x ≠ y 

  x
2  y

2
 (mod p) 

Thus, the numbers 1
2
, 2

2
,…, 

   

 
 

 

 are congruent to mod p.  

Hence the claim. 

If k is a quadratic residue then  

(p-k)
2
 = p

2
 + k

2
+ -2pk   k

2
 (mod p) 

  There are exactly  
    

 
    quadratic residues and exactly  

    

 
     quadratic 

non-residues mod p. 

Hence the theorem. 

14.3 Legendre’s symbol and its property 

 Definition 14.1.2: Legendre’s symbol 

Let p be an odd prime. If n   0 (mod p) we define the Legendre’s symbol (n 

| p) as follows 

         
           

            
  

If n   0 (mod p) then (n | p) = 0 

 

Example: 

Here (1 | p) = 1 if x
2  1 (mod p) (i.e.)     

  (m
2 

| p) = 1 if x
2 m

2
 (mod p) (i.e.)     

     (2 | 5) = -1 if x
2  2 (mod 5) (i.e.)      

    (2 | 11) = -1 if x
2  2 (mod 11) (i.e.)       

             (66 | 11) = 0 if x
2 66 (mod 11) 

Note: 

Legendre’s symbol is periodic function 

   (m | p) = (n | p) whenever m   n (mod p) (i.e.) the Legendre’s symbol is 

periodic with period p 

Case 1: suppose (m | p) = 1 
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 Consider quadratic congruence  

                           x
2  m (mod p) has a solution  

since x
2  m (mod p) and m   n (mod p) 

 x
2  n (mod p) (by transitive) 

           (n | p) = 1 has solution 

 Thus (m | p) = (n | p)  

Case 2: (m | p) = -1 

Consider quadratic congruence 

            x
2  m (mod p) has no solution 

since x
2  m (mod p) and m   n (mod p) 

 x
2  n (mod p) (by transitive) has no solution  

   (n | p) =      = -1 

Thus (m | p) = (n | p) 

Thus, the Legendre’s symbol is periodic with period p 

Theorem: 14.2 Euler’s Criterion 

 Let   be an odd prime then for all n we have (n | p)   
   

          

Proof: 

Case 1:  If (n | p) = 0      n   0 (mod p) 

  
   

   0 (mod p) 

  
   

   0 (mod p) 

By symmetry (n|p)   
   

  (mod p) 

 

Case 2: If (n|p) = 1 and n   0 (mod p) 

The congruence       x
2  n (mod p) has solution (say “x1”) 

                               x1
2  n (mod p) 

n  x1
2
 (mod p) 

 
   

     
  

   

  (mod p) 

 
   

          (mod p)          ( By Little Fermat theorem a
p  a (mod p) ) 



 

117 
 

Divisibility 

 

 

NOTES 

 

 

  

Quadratic Residues And Quadratic 

Resiprocity Law 

 

Notes 

 

 
   

    (mod p)   

 
   

           (mod p)                ( since (n | p) = 1) 

By symmetry, 

           
   

   (mod p)    

Case 3: If (n|p) = -1 & n  0 (mod p) 

  Consider the polynomial f(x) =  
   

  -1 the deg (f(x)) = 
   

 
 

 By Lagrange’s theorem, the congruence f(x)   0 (mod p) has at most   
   

 
  

solutions. 

It has  
   

 
   quadratic residues mod p are solutions and 

   

 
   quadratic non 

residues mod p is not solution. 

  
   

   1 (mod p) if (n|p) = -1 

By Euler format theorem, 
 

                       n
p-1   (mod p)   

                 n
p-1     (mod p)   

                  (  
   

 -1) (  
   

 +1)    (mod p)   

  Since (  
   

 -1)   0 (mod p) 

                               (  
   

 +1)    (mod p)   

 
   

      (mod p)   

 
   

        (mod p)   

By symmetry,            
   

   (mod p)      

Theorem: 14.3 

Legendre symbol is completely multiplicative (i.e.) for all m, n, (mn|p) = 

(m|p)(n|p) 

Proof: 

Case 1: If m   0 (mod p), n   0 (mod p) then mn  0 (mod p) 

  (i.e.) (m|p) = 0, (n|p) = 0 & (mn|p) = 0 

   (mn|p) = (m|p) (n|p) 

Case 2: If m   0 (mod p), n   0 (mod p) then mn   0 (mod p) 
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By Euler criterion theorem, 

(mn|p)      
   

   (mod p) 

  
   

  
   

   (mod p) 

            (mod p) 

(mn|p)-            0 (mod p)                                                                    

(*) 

Since the value of (m|p), (n|p) and (mn|p) are either 1 or -1 

The value of (mn |p)-            are either 0 (or) 2 (or) -2 

 If (mn|p)-            = 2 (or) -2  

Then   2 (or) -2   0 (mod p) (from eqn *) 

This is not true  

 (mn|p)-            = 0 

 (mn|p) =            

Note: 

    The Legendre symbol is also called the quadratic character (mod p) and it 

is denoted by      (i.e.)      = (n|p)  

14.4 Evaluation of (-1|p) and (2|p) 

  Theorem: 14.4     Evaluation of (-1|p) and (2|p) 

 For every odd prime p, we have 

             (-1|p) =     
   

   =  
                      

                       
  

Proof: 

By Euler criterion, 

                  
   

            

                    
   

            

            
   

              

The value of            
   

  are 1 (or) -1 

The value of              
   

  are 2 (or) -2 (or) 0 

If              
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This is not true. 

              

 
  

    

             (-1|p) =     
   

   =  
                      

                       
  

Theorem: 14.5 

For every odd prime p, we have 

             (2|p) =     
    

   =  
                       

                         
  

 

Proof: 

 p-1                              

               2                              

        p-3                               

             4                             

             r  
   

 
            

   

  
   

 
          

where r is either 
   

 
 or p - 

   

 
    

   

 
multiplying vertically we get 

      2.4.6…(p-3) (p-1)            
   

         
   

 
            

 
   

        
   

 
       

          

  
   

 
             

 
   

        
   

 
       

          

  
   

 
             

 
   

   
   

 
        

    

   
   

 
             

Cancel   
   

 
   on both sides we get 

 
   

       
    

                                                   (1) 

By Euler Criterion theorem, 

                            (n |p)     
   

         

 (2|p)     
   

                                                 (2) 
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From equation (1) & (2) we get 

                          (2|p)      
    

         

        (2|p) -     
    

             

The values of (2|p) and     
    

  are either -1 (or) 1 and they 

simultaneously take same values, 

Otherwise p|2 

   (2|p) =     
    

  

Case 1: Now      
    

    if  
    

 
 is an even say 2k 

    p
2
- 1 = 16k 

    (p- 1) (p+1) = 16k 

Since p is an odd prime   either (p-1) or (p+1) is a multiple of 4 and the 

other is even. 

  (i.e.)  (p-1) (p+1)             

                                         

Case 2:     
    

      if  
    

 
  is an odd say 2k+1 

    p
2
- 1 = 16k + 8 

    p
2
- 9 = 16k  

     (p+3) (p- 3) = 16k 

Since p is an odd prime   either (p-3) or (p+3) is a multiple of 4 and the 

other is even  

   (i.e.) (p+3) (p- 3)             

                  

      (2|p) =     
    

   =  
                       

                         
  

 14.5 Gauss Lemma 

 Theorem:14.6 (Gauss Lemma) 

 Assume n   0 (mod p) and consider the least positive residues mod p of the 

following    
   

 
  multiplies of n: n, 2n, 3n,…,  

   

 
  . If m denotes the 

number of these residues which exceeds p|2, then (n|p) =     m   
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Proof: 

 Claim 1: The numbers n, 2n, 3n, …,  
   

 
    are incongruence to mod p 

Suppose              , for i  j, 1≤ i, j ≤  
   

 
 

                 

                  

                     (⸪ n   0 (mod p)) 

                                     (⸪ 0 < |i-j| ≤  
   

 
)  

Which is a contradiction to i  j 

  The numbers n, 2n, 3n, …,  
   

 
   are incongruence to mod p 

Let A = {a1, a2, a3,…,ak}, where each ai            for 1≤  t  ≤  
   

 
& 0 < 

ai<
 

 
 

& B = {b1, b2, b3,…,bm}, where each bj            for  1≤  s  ≤  
   

 
&

 

 
< 

bj<  

 m+k =  
   

 
 (since A and B are disjoint) 

Let C = {c1, c2, c3,…,cm }`where cj= p- bj 

Now,  
 

 
<  bj<  

   - 
 

 
>  -bj > -  

   p- 
 

 
> p- bj > p-  

  
 

 
>  cj> 0 

   0<cj< -
 

 
 

Claim (2):     =   

Let   cj = aj      some pair i& j 

         =         

              = p 

      = p 

        = p 

Since p          
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We get a contradiction (⸪              ) 

     =   

  (i.e.)      has m+k elements in the interval [1, 
   

 
  

            
   

 
  

But       {a1, a2, a3,…,ak,c1, c2, c3,…,cm }` 

Taking product on both sides, 

 1.2.3….
   

 
 = a1. a2. a3.…,ak.c1. c2. c3.….cm 

         (
   

 
)!   = a1. a2. a3.…,ak .(p- b1).(p- b2)...(p- bm). 

         (
   

 
)!      a1. a2. a3.…,ak(-1)

m
. b1. b2... bm. (mod p) 

      m
  a1. a2. a3.…,ak . b1. b2... bm. (mod p) 

      m
 n, 2n, 3n, …,  

   

 
   (mod p) 

      m  
   

  
   

 
  (mod p) 

Since p does not divides  
   

 
   

By cancellation law, we get, 

                   1         m  
   

   mod p) 

x (-1)
m     m      2m  

   

   mod p) 

     m    
   

   mod p)  

By Euler criterion theorem, we get, 

  
   

   (n|p)   mod p) 

By equivalence relation,  

  (n|p)       m   mod p) 

  Since the values of      m   
& (n|p) are takes 1 or -1 and they 

simultaneously take same value otherwise  
 

 
 

          (n|p) =      m  
 

Theorem: 14.7 

Let m be the number defined in Gauss lemma then 



 

123 
 

Divisibility 

 

 

NOTES 

 

 

  

Quadratic Residues And Quadratic 

Resiprocity Law 

 

Notes 

 

 m     
  

 
 

   

 

   
 + (n-1)  

    

 
 (mod 2) 

In particular if n is odd, then 

            m     
  

 
 

   

 

   
  (mod 2) 

Proof:  

Let m be the number of least positive residue of the numbers which exceed 
 

 
 

Consider the multiple of n (say) (t.n) where 1≤  t  ≤  
   

 
 

Now,  

  

 
   

  

 
   

  

 
  , 0 < 

  

 
 < 1 

    tn = p  
  

 
    

  

 
  

    tn = p  
  

 
  rt ,0 < rt < p 

   rt = tn - p  
  

 
                                          (1) 

By Gauss lemma, 

    { a1, a2, a3,…,ak,b1, b2, b3,…,bm} 

                = {r1,r2,…,      

 

} 

    { a1, a2, a3,…,ak,c1, c2, c3,…,cm } 

= {1,2,…,
   

 
 } where cj = p – bj 

Adding       we get 

   

   

 
    =     

 
    +    

 

   
 

           
  

 
  

   

 

   
=     

 
    +    

 

   
 

    
   

 
   -p  

  

 
 

   

 

   
=     

 
    +    

 

   
 

         
   

 
 -p  

  

 
 

   

 

   
=     

 
    +    

 

   
 

    
    

 
 -p  

  

 
 

   

 

   
=     

 
    +    

 

   
                        (2) 
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Adding      , we get 

      
   

 
 =     

 
    +    

 

   
 

    

 
  =     

 
    +        

 

   
 

                                =     
 
    +    

    -     

 

   
                        (3) 

(2) + (3)  

                  (n+1) (
    

 
      

  

 
 

   

 

   
   =       

 
    + mp 

mp = (n+1) (
    

 
      

  

 
 

   

 

   
  -       

 
                                   (4) 

we know that  

(n+1)         (mod 2)   and p       (mod 2)    

Taking (mod 2) to equation (4) 

                 m   (n-1) (
    

 
     

  

 
 

   

 

   
   (mod 2)  

In particular, if n is odd, (n-1) is even 

                m     
  

 
 

   

 

   
  (mod 2) 

Hence the theorem.  

Theorem: 14.8   Quadratic reciprocity law: 

 If p and q are distinct odd primes then (p|q) (q|p) =      
          

  

Proof: 

By Gauss lemma and the previous theorem, we have 

       (q|p) =     m     
where   m     

  

 
 

   

 

   
  (mod 2) 

Similarly   (p|q)  =     n     
where   n     

  

 
 

   

 

   
  (mod 2) 

Thus (p|q) (q|p) = (-1)
m+n 

Claim:m+n = 
          

 
 



 

125 
 

Divisibility 

 

 

NOTES 

 

 

  

Quadratic Residues And Quadratic 

Resiprocity Law 

 

Notes 

 

 (ie) to    
  

 
 

   

 

   
 +   

  

 
 

   

 

   
 = 

          

 
 

Consider f (x, y) = qx-py 

If x and y are non-zero integers then f(x,y) is a non-zero integers 

As x takes the values 1, 2,…,
   

 
& y takes the values 1, 2,…,

   

 
  for a fixed 

x we have, 

 f (x, y) > 0   qx-py > 0   y <
 

 
  (or) y ≤  [

 

 
 ] 

  The total number of positive values of   

     f (x, y) =   
  

 
 

   

 

   
 

for a fixed-point y, 

    f (x, y) < 0   qx-py < 0 

  qx < py  

  x ≤  
  

 
  

  The total number of negative values of  

         f (x, y) =   
  

 
 

   

 

   
 

Thus, total number of positive and negative values of  

        f (x, y) =   
  

 
 

   

 

   
 +   

  

 
 

   

 

   
 

But, the total number of positive and negative values of f (x, y) is   

 
   

 
  

   

 
  = 

          

 
 

Thus,  

          

 
 =   

  

 
 

   

 

   
 +   

  

 
 

   

 

   
 

          

 
 = m+n 

     
          

  =     m+n
 

                              =     m    n   
 

                              = (p|q) (q|p) 
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    (p|q) (q|p) =      
          

  

Note: 

Quadratic reciprocity law can also be written as  

                  (q|p) =            
          

  

14.7 Applications of Quadratic Reciprocity Law 

Example:1 

Determine whether 219 is quadratic residue or not residue (383) 

Solution: 

219 = (3× 73| 383) = (3|383)(73|383) (⸪Legendre symbol is completely 

multiplicative) 

          (3|383) = (383|3)      
            

   (By quadratic reciprocity law) 

                      = (383|3)      
        

  

                      = (383|3)          

                      = (383|3)      

                      = -(383|3)                         (Legendre symbol is periodic with p) 

                      = -(2|3)                              (⸪ 383 ≡ 2 (mod 3)) 

                      = -     
   

    (using theorem 14.5 (2|p) =     
    

 ) 

                      = 1 

Now, 

          (73|383) = (383|73)      
             

   (By quadratic reciprocity law) 

                      = (383|3)      
         

  

                      = (383|3)           

                      = (383|73)  

                      = (18|73)                         (Legendre symbol is periodic with p) 

                      = (18|73)                              (⸪ 383 ≡ 18 (mod 73)) 

                      = (2 ×9|73)       

                      = (2 |73) (9|73)    

                      = (2 |73) (1)                               
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                      =      
      

    (using theorem 14.5 (2|p) =     
    

 ) 

                      = 1 

  ⸫ (219|383) = (3|383) (73|383) 

                            = 1 ×1 

                             = 1  

⸫   219 is a quadratic residue (mod 383) 

Example:2 

Determine those odd prime p for which 3 is a quadratic residue or non-

residue. 

Solution: 

By Quadratic reciprocity law, 

                   (q|p) =            
          

  

                  (3|p) =            
        

  

                    (3|p) =            
   

    (1) 

To determine (p|3), 

We need to know the value of p (mod 3), and to determine      
   

 , we 

need to know the value of  

 
   

 
 ) mod 2 or the value of p mod 4, 

Hence, we consider p (mod 12) 

⸫ p ≡ 1,5,7 and 11 (mod 12)                (⸪ p is odd) 

Case 1:  let p ≡ 1(mod 12) 

In this case p ≡ 1 (mod 3), p ≡ 1(mod 4) 

So                   (p|3) = (1/3) = 1                                                      (2) 

Also,                   p ≡ 1 (mod 4) 

So     (
   

 
) is even,      

   

  = 1                                                  (3) 

Hence                  p ≡ 1 (mod 3) 

Substitute (2) and (3) in (1) 

    (3|p) = 1 

⸫  3 is quadratic residue mod 1 
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Case 2 : let p ≡ 5 (mod 12) 

                p ≡ 5 (mod 3) p ≡ 5 (mod 4) 

In this case  

                p ≡ 2 (mod 3) p ≡ 1 (mod 4) 

 so (p|3) = (2|3) =     
    

  

                           =    

Also, p ≡ 5 (mod 4)    p ≡ 1 (mod 4) 

From (3),       
   

  = 1 

From (1), (3|p) = (1) (-1) = -1 

 3 is non-residues mod 5 

Case 3: let p ≡ 7 (mod 12) 

                p ≡ 7 (mod 3) & p ≡ 7 (mod 4) 

In this case  

                p ≡ 1 (mod 3) p ≡ 3 (mod 4) 

so (p|3) = (1|3) = 1 

Also,               p ≡ 7 (mod 4)    p ≡ 3 (mod 4) 

   p-1 ≡ 2 (mod 4) 

 
   

 
 ≡ 1 (mod 2) 

 
   

 
 - 1 ≡ 0 (mod 2) 

 
   

 
 – 1 = 2k 

 
   

 
  = 2k + 1 

 ⸫ (
   

 
 ) is odd  

 Hence      
   

  = -1 

From (1), (3|p) = 1. (-1) = -1 

⸫ 3 is non-residue mod 7 

Case 4: let p ≡ 11 (mod 12) 

                p ≡ 11 (mod 3) & p ≡ 11 (mod 4) 

In this case  
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                p ≡ 2 (mod 3) p ≡ 3 (mod 4) 

so (p|3) = (2|3) = -1 

Also,               p ≡ 11 (mod 4)    p ≡ 3 (mod 4) 

As the case above (
   

 
 ) is odd         

   

  = -1 

From (1), (3|p) = (-1). (-1) = 1 

⸫ 3 is quadratic residue mod 11 

Summarizing the result of the four cases we find  

                          

                            
 

14.8 Jacobi symbol: 

 If p is a positive odd integer with prime factorization 

     P =    
   

      we have to define the Jacobi symbol for any integer ‘n’,  

                    (n|P) =          
 

   
                            (*) 

where      ) is Legendre symbol     

Note: 

Define (n|1) = 1 and (n|p) is called a Jacobi symbol. 

Remark: 

The values of (n|p) are either 1, -1 (or) 0. (n|p) = 0 with (n, p) > 1. 

If the congruence    ≡ n (mod p) has a solution then (     ) = 1 for each 

prime   , in (*) and hence (n|p) = 1 

However, converse is not true. 

Since (n|p) = 1 if an even number of factors -1 appears in (*). 

Theorem: 14.9 

If P and Q are positive odd integers, we have 

(a) (m|P) (n|P) = (mn|P) 

(b) (m|P) (m|Q) = (mn|PQ) 

(c) (m|P) = (n|P) whenever m ≡ n (mod p). 

(d) (     ) = (n|P) whenever (a, P) = 1 

Proof: 

Let       P =    
   

    where   
   are odd prime  

Now, 
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(a)         (m|P)  (n|P) =           
 

   
            

 

   
   

                                =           
 

   
          

                                 =                  
 

   
 

                               =             
 

   
 

                               = (mn|P) 

  (ie)  (m|P) (n|P)  = (mn|P) 

⸫ Jacobi symbol is completely multiplicative. 

(b) let   P =    
    

     
      

       
   

       
      

       
     

   

Where   
   are odd prime and not necessarily distinct 

Now, (m|P)  =  (m|  
          

         
           

           
    

              
           

           
         

                                    

Then, 

(m|P)       = 

m|

  
          

         
           

           
         

                                        

                      
           

         
     

       = (m|   
    

     
         

            
         

  ) 

                     = (m|PQ) 

(m|P)       = (m|PQ) 

(c)   P =    
   

    

Given that    ≡ n (mod P) 

        

   
    

     
        

   
           

            

⸫                    (using Legendre symbol is periodic) 

                

                        (m|P) =          
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 =          
 

   
 

                                 = (n|P) 

  ⸫ (m|P) = (n|P) whenever    ≡ n (mod P) 

(d) (     ) = (    )  (n|P)                                (1)  (By (a)) 

      P =    
   

    where   
   are odd prime not necessarily distinct prime 

Now, we have to prove that (    )  = 1 

Since (a, P) = 1                     a 

   a   0 (mod P)  

⸫   ≡    (mod P) has a solution 

⸫                 

Theorem:14.10 

 If P is an odd positive integer, we have 

(a) (-1|P) =      
   

  

(b) (2|P) =     
    

  

Proof: 

(a) letP =    
 
    where   

   are odd prime not necessarily distinct prime 

=          
 

   
 

=                           

P = 1+           
 

   
 +                    

Since each   
   are odd        is an even taking mod 4, we get 

P ≡1+           
 

   
 (mod 4) 

P -1≡       
 

   
 (mod 4) 

   

 
 ≡ 

      

 

 

   
 (mod 4) 

 
      

 

 

   
 = 

   

 
    for some integer k. 

Now, (-1|P) =         
 

   
 

                   =       
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                   =      
 

      

 

 

    

                   =      
   

 
   

 

                   =      
   

         

                   =      
   

  

⸫ (-1|P) =      
   

  

(b) let    =    
  

   
 

=        
    

 

   
 

=      
         

          
     

P = 1+     
    

 

   
 +     

       
          

Since each   
   are odd     

    is an even  

We have   
                

Taking mod 64, we get 

           
    

 

   
 (mod 64) 

           
    

 

   
 (mod 64) 

           
    

 

   
 (mod 64) 

     

 
    

  
   

 
 

 

   
 (mod 8) 

  
  

   

 
 

 

   
 = 

     

 
 + 8k for some integer k 

Now,  

          (2|P) =         
 

   
 

                   =      
  

   

 

 

   

 

                   =      
 

  
   

 

 

    

                   =      
  

   

 
   

 

                   =      
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                   =      
  

   

  

⸫ (2|P) =      
  

   

  

Hence the theorem. 

Theorem: 14.11 

Reciprocity law for Jacobi symbol. If P and Q are positive odd integers with 

(P, Q) = 1 then 

                                 (P|Q) (Q|P) =      
          

  

Proof: 

Since (P, Q) = 1 

Let P =           where   
   and   

   are distinct primes 

Q =           

Then (P|Q) =          
 

   

 

   

 

(Q|P) =          
 

   

 

   

 

(P|Q)(Q|P) =          
 

   

 

   

        

                   =      
            

 

 

   

 

   

 

                   =      
 

      

 

 

   
 

      

 

 

    

                   =       
   

 
      

   

 
     

 

                   =      
          

         

                   =      
  

   

  

⸫ (P|Q) (Q|P) =      
          

  

Hence the theorem. 

Example:1 
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Determine whether -104 is a quadratic residue or non-residue of the prime 

997. 

Solution: 

Since 104 = 2.4.13 

  (-104|997) = (-1|997) (2|997) (4|997) (13|997) 

                   = - (13|997) 

                   = - (997|13) 

                   = - (9|13) 

                   = - (1) 

Thus -104 is a quadratic non-residue mod 997. 

14.9 Applications to Diophantine equation: 

Equations to be solve in integers are called Diophantine equation. 

The equation            where k is the given integer is the example of 

Diophantine equation. 

Now, we have to find for a given k whether or not equation has integer 

solution x, y and if so we exhibit them. 

Theorem:14.12 

The Diophantine equation            has no solution if k has the form  

k =               Where m and n are integer such that no prime 

 P   (-1) (mod 4) divides m. 

Proof: 

Assume that the Diophantine equation has solution. 

k =               

Taking mod 4 we get, 

k   (-1) (mod 4) 

the Diophantine equation becomes, 

          (mod 4)                                                              (1) 

For any ‘y’,               (mod 4) 

If x is even, then          (mod 4) 

If       (mod 4) then          (mod 4) 

The equation (1) is not satisfied 
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If      (mod 4) then         (mod 4) 

So that           (mod 4) satisfied 

⸫      (mod 4) 

Let a = 4n-1 then       (mod 4) 

Now, k =               

             =          

The equation            becomes 

                  

                  

               (          ) 

Consider, (          )          (mod 4) 

       (mod 4) 

    (mod 4) 

(          )     (mod 4) 

⸫            is an odd and there exists one prime divisor     (mod 4) 

(i.e.) all prime divisors cannot be    (mod 4)  

Let p be a prime such that p     (mod 4) that divides            

  (i.e.) p|         

             (mod 4) 

          (mod 4) 

But p does not divides m 

Since,           = (-1|p) (4|p) (   |p) 

                              = (-1|p) 

⸫                  =    which is contradiction  

 The equation            has no solution if k =               

14.10 Exercise: 

1. Determine whether 888 is quadratic residue or non-residue of the prime 

1999. 

2. Determine whether 97 is a quadratic residue or non-residue mod 383. 
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3. Determine those odd primes p for which (-3|p) = 1 and those for which (-

3|p) = -1 

4. Prove that 5 is a quadratic residue of an odd prime p if p ≡ ±1 (mod 10), 

and that 5 is  a non residue if p ≡ ± 3 (mod 10)     

5. Let p be an odd prime. Assume that the set {1, 2…, p-1} can be expressed 

as the union of two nonempty subsets S and T, S ≠ T, such that the product 

(mod p) of any two elements in the same   subset lies in S, whereas the 

product (mod p) of any elements in S with any elements in T lies in T. 

 Prove that S consists of the quadratic residues and T of the non residue’s 

mod p.    

6. Prove that        composite for n > 1.. 

 


