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BLOCK | — FUNDAMENTAL, PRIME
NUMBERS AND ARITHMETIC
FUNCTIONS

UNIT: I DIVISIBILITY

Structure

1.1 Introduction
1.2 Objectives
1.3 Divisibility

1.4 Greatest common divisor

1.1 Introduction:

This unit introduces the basic concepts of elementary number theory
such as divisibility, greatest common divisor, prime and composite
numbers. We will start by discussing the notion of divisibility for the set
of integers. We will be frequently using the fact that both addition and
multiplication in the set of integers are associative, commutative and we
also have distributive property a(b+c)= ab+ac for any integers a, b, c.
These operations give the structure of a commutative ring to the set of
integers. Divisibility can be studied more generally in any commutative
ring, for example, the ring of polynomials with rational coefficients.

1.2 Objectives:

Students will be able to

e Identify and list all factors of a given whole number.
e Determine the greatest common factor of two or more whole numbers.

e Describe the procedure for finding the greatest common factor of two
or more whole numbers.

¢ Recognize the difference between a common factor and the greatest
common factor of two or more whole numbers.

Definition 1.1.1: (The principle of induction) If Q is a set of integers such
that

(@) 1€Q,
(b) n € Q implies n+1 € Q, then
(c) all integers > 1 belong to Q.

Definition 1.1.2: (The well-ordering principle): If A is a nonempty set of
positive integers, then A contains a smallest member.

Divisibility

Notes
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1.3Divisibility:

dln = n = cd where c € Z.
Notes Which satisfies the following properties.

(i) dld = d = d.1 where 1 € Z(Reflexive )
(i) If a|b and b|c then a|c(Transitive)

For,alb = b = ka wherek € Z
b|c = ¢ = ma where me Z
c=mka,meZ keZ
c=pa, mk=p
= alc

(iii)  If d|a and d|b then d|(ax + by)(Linearity)
dla = a = kd wherek € Z
d|lb = b =mawheremeZ
(ax + by) = kxd + myd

= (kx £ my)d
=td wheret =kxtmy €Z
~ d|(ax £ by)

(iv) d|nandn|d = |d| = |n|(Comparison)
(v) Ifd|laandd|b

The d is divisor of both a and b. (common divisor)
(vi) d|a = dx|ax is called a multiplication property.
(vii) If x # 0,d|a is called cancellation property.

Definition 1.1.3:
If d|a and d|b then d is said to be a common divisor of a and b.
Theorem:1.1

Given any two integers a and b there is a common divisor d of a and b is of
the form d = ax + by where x and y are integers more over the common
divisors of a and b divides this d.

Proof: Case(i): Leta>0,b = 0
and Letn=a+b»b

The proof is given by induction on n.
Ifn=0=a+b=0

=a=0andb =0




~d=0, x=0andy =0

~ The resultis true forn=0

By induction principle we assume that the result is true forn=0, 1, 2, ...,(n-

1).
Suppose a= b.
If b=0, Letustaked=a,x=1,y=0
If b> 1, then we consider (a-b) and b
Now (a-b) + b =a
=n-—>b
<n-1
By our assumption the result is true for (a-b) and b.
~d=(a—-b)x+ by

= d|(a — b)x and d|b
By Linearity, d|(a—b) + b

=d|a
Thus d|a and d|b
Hence, d is a common divisor of aand b
Andd=ax+ (y —x)b
ord=aX+bY where x =X,y-Xx =Y are integers.
If elaand e|b
Then by Linearity e|lax + by

= e|ld
Case(ii) Let a < 0 (or) b < 0 (or) both.
If a<Othenl|al=0andb <othen|b| =0
By case (i), d is a common divisor of |a| and |b]| .
By case (i) d = |a|x + |b|y wherex,y € Z
Sincea< 0= |a| = —a
Sinceb< 0= |b| = —b
d = |alx + |bly
= —a(x) + (—by)

Divisibility

Notes
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= a(=x) + b(-y)
d=aX+bY, whereX = —x,Y = —y are some integers.
Theorem 1.2:

The given integers a and b there is only one number d with the following
properties

(i) d=0
(i) d|laandd|b
(ili) elaandeld = e|d

Proof: Givend > 0, by theorem 1.1 case (i) d satisfies conditions (ii) and
(iii) and (-d) also satisfies the condition (ii) and (iii).

If d'is a another common divisor which satisfies condition (ii) and (iii).
Then, d'|d and d|d’
~ld] = |d|
i.e)d=d

Hence, there is exactly one d=> 0 which satisfies the (ii) and (iii).

1.4 Greatest Common Divisor

Definition 1.1.4:

An integer d >0 is said to be the greatest common divisor of two
integers a and b. If,

(i) dla and d|b
(i) elaande|b = e|d

Note:

(i) (a,b) =d
(i) (a,b) =1 thenaand b are relatively prime.

Theorem 1.3: Euclid’s Lemma
If a|lbc and (a,b) = 1, then alc.
Proof: Given (a,b) =1
1 =ax + by, where x,y €Z
¢ = acx + bcy

since alacx and a|bcy

= alacx + bcy (Linearity)



Divisibility
= ajc.

1.5 Exercises:

1.1f (a,b) = 1 andif c/a and d/b,then (c,d) = 1. Notes
2.1f (a,b) = (a,c) = 1,then (a,bc) = 1.

3.If (a,b) = 1, then (an,bk) = 1,foralln >1,k> 1.
4.1f (a,b) = 1,then (a + b,a? — ab + b?) is eiher 1 or 3.

5.1f(a,b) = 1andif d/(a+ b),then (a,d) = (b,d) = 1.
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UNIT: Il FUNDAMENTAL THEOREM
OF ARITHMETIC

Structure

2.1 Introduction

2.2 Objectives

2.3 Prime Numbers

2.4 The series of reciprocals of the primes
2.5 The Euclidean Algorithm

2.6 Exercise

2.1 Introduction:

This unit explores the special significance of the case in which the
remainder in the Division Algorithm turns out to be zero. We elaborately
discuss Euclid’s algorithm for finding the greatest common divisor of two
non-zero integers. The algorithm not only determines the gcd, but it also
allows us to express the gcd as an integral linear combination of the given
integers.

2.2 Objectives:

Students will be able to

e to compute Greatest Common Divisor

e to compute multiplicative inverse

e Recognize the difference between a common factor and the greatest
common factor of two or more whole numbers.

2.3 Prime Numbers:

Definition 2.1.1: An integer n is called prime if n > 1 and if the only
positive divisors of nare 1 and n. If n > 1 and if nis not prime, then n is
called composite.

Theorem 2.1:

Every integer n > 1 is either a prime (or) a product of primes.
Proof:

We use induction on n

When n = 2 which is a prime.

~ The result is true.



We assume that the result is true for all integers >1 but less than n.

If n is a prime, there is nothing to prove.

If not, then n is composite.

Let n=cd, where 1<c<n,1<d<n

Since c<n and d<n

Then by assumption ¢ and d prime or product of prime.
~ n = cd is a product of prime .

Theorem 2.2: (Euclid) There are infinitely many primes.

Proof: Suppose that there are finite number of primes (say) p1,pa, -

Let N=1+pips ...0n
Now N>1 so either N is prime or N is a product of primes.

Since N exceeds each p; , and so N is not a prime.

If p;|N and p;|p1p; ... Di - Pn

= PilN = p1P2 . Pi - Pn

= pi|l

This is not true.

~ No prime divides N.

~ N is not a product of prime.

This contradicts to the above theorem.
=~ There are infinitely many primes.
Theorem 2.3: If a prime p does not divide a then (p,a)=1.
Proof: Let (p,a)=d

We have d|p and d|a
Sincedlp=>d=1ord=p

Since d|a and d|p =d|a

=« to p does not divide a

~d=1

Hence (p,a)=1.

Theorem 2.4: If a prime p divides ab, then p|a or p|b. More generally if

pla,a, ...q; ...a,, = p must divide at least one of a;a, ...q; ... a,.
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Proof: Assume p|ab and p does not divide a.

To prove that p|b.

Since p does not divide a, by theorem 1.6, (p,a)=1

By Euclids lemma, p|b.

The general case is proved by induction on n.

The proof is left to the reader.

Theorem 2.5: (Fundamental Theorem of Arithmetic)

Every integer n > 1 can be represented as a product of prime factors in only
one way apart from the order of the factors.

Proof:

We use induction on n

When n = 2 which is a prime.

There is nothing to prove

Assume that the result is true for all integers < n.

When n is prime, the theorem is true.

If not, n is a composite.

Suppose n has 2 factorization (say)

N=pPPreeer... Ps=q1q2 - .- q: 1)
Where p;’s and q;’s are primes.

Claim: s = t and p;=some q;’s

Since p1|pip2...-.Ps= q1q5........ q:
== pllqqu ......... q¢

= p, |p, divides atleast one of the factors.

Without loss of generality, We have p,|q; and p,, q; are primes.

“P1=q1
From (1) n =pips..cennen.... Ds= 1z veenne--. qs
pl =P2P3-ceennnnn. Ps=q243........... q¢

1

Since 1<=<n
P1

~ By our assumption, the result is true for —

P1



Wehaves—1 =t—1landp; = q;, i#]

LSs=t JForalli #j,1<i<s—-11<j<t-1
. P1 = qq, p; equals to some g, i=1,2,...,s-1, J-1,2,...t-1.
~s<tand p; = q;, foralli

Hence every integer n > 1 is uniquely written as the product of prime
factors.

Theorem 2.6:

If n=[];-, p;* , the set of positive divisors of n is the set of numbers of the
form [[/_, p;“i where 0< ¢; < a; for i=1.2,........ r.

Proof: Exercise
Note. If we label the primes in increasing order, thus
p1=2, p, =3, p3=>5......,p, =the nth prime,
Every positive integer n (including 1) can be expressed in the form
n=[1;21 p:“

where now each exponent a; > 0. The positive divisors of n are all
numbers of the form

21 Dt where 0< ¢; < a;. The products are of course,
finite.

Theorem 2.7:

If two positive integers a and b have the factorizations a= [[;Z, p;*,
b=[[;Z, p;* then g. c .d has the factorizations (a ,b)= [[;=,p;“ where
each ¢; = min {a;, b;} the smaller a; and b;.

Proof:

Letd= [[;Z;p;¢ . Since ¢; < a;andc; < b; wehaved|aandd|bsodis
a common divisor of aand b. Let e be any common divisor ofaandb ,
and write e= [[;Z, p;¢t . Then e; < b;and e < c;. Hencee|d,sodisa g.
c.dofaandb.

2.4 The series of reciprocals of the primes:-

Theorem 2.8:-
The infinite series Yo, pi diverges.

Proof:

The following short proof of this theorem is due to Clarkson. We assume
the series converges and obtain a contradiction. If the series converges there
is an integer k such that

9
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Let Q = py, P2, .-, Pk, and consider the numbers 1+nQ for n=1,2,... None
of these is divisible by any of the primes p4, py, ..., pr. Therefore, all the
prime factors of 1+nQ occur among the primes py41, Px+2, ... 1herefore for

each r > 1 we have
T [ee] [oe]
1 1
22\ 2 o)
1+n0Q Pm
n=1

t=1 \m=k+1

Since the sum on the right includes among its terms all the terms on the left.
But the right-hand side of this inequality is dominated by the convergent

geometric series
(o] 1 t
2.)

t=1

Therefore the series Y.n- 1/(1 +n0) has bounded partial sums and hence

converges. But this is a contradiction because the integral test or the limit
comparison test shows that this series diverges.

Theorem 2.9: Division Algorithm

Given integers a and b with b > 0 there exits unique integers q and r such
thata = bq + r where 0 <r < b. Moreoverr = 0 < b|a.

Proof:

Let S= {y/y =a—Dbx, xisaninteger, y> 0} be the set of positive
integers.

=~ S Is non-empty.
By well-ordering principle, S contains a smallest member (say) a — bq
Let r=a—bgandso r =0
= a =bq+rwithr > 0.
Claim: r<b
Suppose that r > b
=>r—b=0
r—b=a+bqg—>b
=a—b(q+1)€ES
~0<r—-b<r
r—b €S and r — b is the smallest element in S.

10



=<« to ris the smallest element in S.
~r<b
Hence, a = bqg +r with 0 < r < b.
To prove that:
The integers g and r are unique suppose that, the another pair of integers
gandr’.
Suchthat, a=bq+r, 0<r<b
a=bq +1, 0<r'<b

bg+r=bq +r

=bg-q) =7 -1

= b|r' —r
If r'—r=+0
=|r'—r|=b (Comparision property)

5 0<r<bh 0<r'<b

s r'—r=0
=r=r

ot b(q_ql)=0 )
Alsoq_q<=>q—q'=0, b>0

Hence there is a unique integer g and r such that, a = bq + 1,0 <r < b.

Ifr = 0,thena = bq & bj|a.

2.5 Euclidean Algorithm

Theorem 2.10: Euclidean Algorithm

Given positive integers a and b where b t a. Let r,=a and r;= b, and apply
the division algorithm repeatedly to obtain the set of remainders
T, 13y ceeennnnns T, The1 defined succesively by the relations

To=T1q1+ T3, 0<nrn<n

r=1q,+130 <13 <13

Th—2= rn—lQn—1+ T, 0 < T < Th-1

L rnqn+rn+1,0 < Th <Tn-1

11
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Then r, , last nonzero remainder in this process is (a,b), the greatest
common divisor of a and b.

Proof:
Given r, is decreasing and positive.
NOW, 1= T qn* Tner
= Tno1= T qn( Ther = 0)
= In|rn-1
NOw, 7, 2= —1qn-1t T
= T qndn-1t "
= T (@ndn-1*1)
= 1|2
Continuing like this, we get
mn=b, nlro=a
= 15, IS @ common divisor of a and b.
If dla=ryandd|b =1,
. d|ry= 119, (By linearity)
= d|r,
Similarly, d|r;, d|ry .......... , A|1p—q, d|m,

~ 15, 1s the Greatest common divisor of a and b.

2.6 Exercises:

(1) Prove that n* + 4 is composite if n > 1.

(2) Prove that every n > 12 is the sum of two composite numbers.
(3) Prove that if 2" — 1 is prime, then n is prime.
(4) Prove that if 2" + 1 is prime, then n is a power of 2.

(5) Let d = (826,1890). Use the Euclidean algorithm to compute d,

then express d as a linear combination of 826 and 1890.

12



UNIT: Il ARITHMETICAL
FUNCTIONS AND DIRICHLET
MULTIPLICATION

Structure

3.1 Introduction

3.2 Objectives

3.3 The Mobius function p (n)

3.4 The Euler Totient function ¢ (n)

3.5 A relation connecting ¢ and p — A Product formula for ¢ (n).

3.6 Exercise

3.1 Introduction:

Number theory, like many branch of mathematics, is often concerned with
sequences of real or complex numbers. In number theory such sequence are
called arithmetical functions. This unit introduces several arithmetical
functions which play an important role in study of divisibility properties of
integers and the distribution of primes.

3.2 Objectives:

The students will be able to

e Describe the properties of Mobius function
e Determine the product formula for Eulers totient function
e Identify the relation between ¢(n) and u(n)

Definition 3.1.1: A real or complex-valued function defined on the positive
integers is called an arithmetical function or a number-theoretic function.

3.3The Mobius function p(n)

Definition 3.1.2: The M6bius function (u) is an arithmetic function
defined by,

fn=1  pw()=1

If n> 1, then n= p;zlng ............. pgkwhere PL’S are distlnct prlmes
uln) = {(_1)k if g =0y = .= a,
0 otherwise
Note:

() n 123456789 10

13
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Notes

un): 1-1-10-11-100 1

(i) u(n) = 0, If nis square free.

Theorem 3.1:
n1_(1ifn=1

Forn > 1, we have Y4, u(d) = H = {O ifn>1
Proof:
If n=1,then
> um = =1
i
If n>1,thenn= p;ipy? ......... p,f" where P;’s are distinct primes and
A1, Ayennnnnnn. , o = 1.

Consider, Y.q;, u(n) = Zd|p‘1"1p;"2 --------- pik umn)

The sum ¥4, u(n) has a non-zero terms only When

d= 11 (p1: P2,P3, -+ Pk )' (pl P2, ) pk—lpk)'
(pip2p03s----- - v Phk—2Pk—1Pk) e evenenn ,(P1D2- e Pr)-

Tamu) = p(DHp®,) + -+ p@OIHp@ip) + -+
w(ph—1pR)

+Hu(pipz o Pr)]
=1+kc (-1)+kc2(—]_)2+... +ka(—1)k
=0

3.4 Euler’s totient function

Definition 3.1.3: (Euler’s totient function) ¢p(n)

If n > 1, the Euler’s totient function ¢(n) is an arithmetic function defined
to be the set of positive integers not exceeding n which are relatively prime
to n.

Thus ¢p(n) = Y=, 1, where dash denotes the sum is taken over those k
which are relatively prime to n.

Theorem 3.1:-

If n > 1 we have ¥4, 9(d) = n.
Proof:-

Let S = {1,2,...,n}.

For each divisor d of n, let A(d) = {k: (k,n) =d,1 < k <n}.
14



That is, A(d) contains those elements of S which have the gcd d with n.
Claim: The subsets A(d) of S form a disjoint collection whose union is S.
If d; # d, are two divisors of n.

Let x € A(d,) N A(d,)

= x € A(d,) and x € A(d,)

= (x,n)=d; and (X,n)=d,

=d, =d,

This is a contradiction.

The subsets A(d) form a disjoint collection whose union is S. Therefore if
f(d) denotes the number of integers in A(d) we have

Z £(d) = n.

din

But (k,n)=d if and only if (k/d,n/d) = 1,and o < k < n if and only if
0 <k/d <n/d. Therefore, if we let q=k/d there is one-to-one
correspondence between the elements in A(d) and those integer g satisfying

0 < g <n/d.(q,n/d)=1. The number of such qis ¢ (g)

Hence f(d) = ¢ (g) and Y, f(d) = n becomes

z p(n/d) =n.

But this is equivalent to the statement Y., ¢ (d) = n because when d runs
through all divisors of n so does n/d. This completes the proof.

Theorem:3.2
If n> 1, we have ¢(n) = deu(d)g
Proof: By the definition of ¢, we have

¢(n) = Yr-,' 1, where dash denotes the sum is taken over those k which
are relatively prime to n.

= Yk=1 [

= k=1 Zd|(n.k) u(d)  (by theorem 3.1)

=> > @
k=1 dn&dlk

1

ﬁ] relatively prime to n.

For a fixed d, the first sum is taken over all k which are multiples of d.
15
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Arithmetical Functions
And Dirichlet 1<k<noe0<k<n
Multiplication

k
Notes <:>O<qsg , Where q=+

= w3

din

3.5 A Relation Connecting ¢p and u

Theorem: 3.3 Product formula for Euler’s Totient function

If n =1, where p(n) = n[[,n(1 - %) where p is prime divisor of n.
Proof:

When n=1,LH.S:¢p(n) =1

RHS =Tl (1—- %) where P is prime.

No prime divides one , so the product is empty.

So assume that R.H.S =1

If n>1,thenn =p,% ... p,-%T where p;’s are distinct
primes.a,....,a; =1
Consider,
-

1 1
[[(=5)=]1(-3)

n n
p|n i=1

16




1 1 1 1
=1—(—+—+---+ )+(

1 N _ L)
P1 D2 rpr PiP2  P1P3 Pr—2Dr-1Pr

DP1P2 «v e Pr
r r r
-1 -1 2 -1 3 —1"
:1+()+z()+z()+ ...... _|_()
i=1 Pi ij=1 piPj i,j,k=1P1P2P3 D1 e e Dr
i#j i#j#k
C (D N Hew) (v
=1+ p YRR N BPPPS
i=1 Pi ij=1 piPj i, k=1 PiD;jPk
i#j i#j#k
+u(p1pz ------ Pr)
P1P2 - - Dr
N
d
dn
1
R.H.S —nl'lpm(l—;)
_ u(d)
d
dn
_Z o
=) Hd)7
din

= ¢(n) (by theorem 3.2)
=L.H.S
Theorem: 3.4 Properties of Euler’s Totient Function

(i) (%) =p* —p*1, wgere pisaprimeand a > 1

(i) ¢(mn) = gb(m)gb(n)m, where d = (m,n)

(i) p(mn) = p(m)p(n) if (m,n) =1

(iv)  ab= ¢(a)|p(b)

(V) ¢(n) is even forn = 3.

Moreover if n has r distinct odd prime factors then 2" |¢(n)
Proof:

(i) By the product formula,
1 . . ..
() = nllppn (1 - ;) where p is prime divisor of n

Putn = p%, we get

1
9 =p°| [a-)
plp®
17
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Since the prime divisor of p“® is p only.
= ¢(p*) =p” (1 - 1)
p
— pa _ pa—l
(i1)By the product formula,
dpm) =nllp(1 - %) where p is a prime divisor of n

o) _ 1
= -l]a-5

p|n
Put n = mn, we have

¢(mn) _

mn

[pimn(1 =)

Since each prime divisors of mn is either a prime divisor of m or of n and
those primeswhich divide both m and n it also divide (m,n)

omn) _ Tpm( = D Tlpin(1 — D

mn Hp|(m,n)(1 - i)
H m 1_1 H n 1_1
=>¢(mn)=m i ( p)n 1p| S
Mpja(1 =)
— pme®)
—@
L pemn) = PP ——, 1.d = (mn)
..¢mn_¢>mq,’>n¢(d), d=(mn
(iii)By property(ii)
d
$p(mn) = qb(m)qb(n)@. d = (mn)
Put d=1then ¢(d) = d(1) =1
L4
RION

¢(mn) = p(m)¢p(n),(m,n) =1
(iv)Givenalb= b = acwhere 1<c<bh
When c=b =2a=1

= ¢(a) = ¢(1)

=>¢la) =1
18



WKT, 1 divides every integer
= 1|¢(b) = ¢(a)|$(b)

When ¢ < b,
Now b = ac
= ¢(b) = ¢ ()
= ¢(b) = p(a)dp(c) (d) where d = (a,c)
¢(c )
b) =d (x
#) = d $(@) Toos = ()

The proof is given by induction on b.
If b=1 =¢bB)=¢p(1)=1

* _ $(c)
(*) becomes, 1 = d ¢(a ) @

= ¢(@)|1= ¢(a)|¢(b)

~Theresultistrueforb=1

By induction we assume that the result is true for all integers < b.

Since ¢ < b, The result is true for c.
d = (a,c) = d|laand d|c

dlc = ¢(d)[¢p(c)

= ¢(c) =kep(d), keZ

¢(c)
= —==k
¢(d)

Equation (*) becomes,

¢(b) = d p(a)k

= ¢(a)|9p(b)

(V) putn = 2¢, a=2

By property (1)

¢(»*) =p* —p*!
$(2%) = 2¢ — pa-1

-(1-)

~ ¢(n)isevenforn >3

19
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If n has atleast one odd prime factor, by product formula,

$() = nllpp(1 =) =nllpa =)

¢() =ncllpm(p—1) wherec =g

Where nc is an integer for at least one odd prime factor, we will get (p-1) is
even.

~ ¢p(n)is even
If n has r distinct odd prime factors

= Each term of the product [],,,(p — 1)contributes a factor 2 to this
product.

c 2] Jo-1

pin
= 2"|¢p(n)

Hence proved

3.6 Exercise:

1. Find all integer n such that

@ @) =n/2, (b)p(n) =¢(2n), (c)en) =12

2. For each of the following statement either give a proof or exhibit a
counter example.

(a) If (m,n)=1then (¢ (m), p(n)) =1
(b) If nis composite then (n, p(n))>1
(c) If the same primes divide m and n then ng(m) = me(n)

3. Prove that

no O pd)
o)~ L@

Prove that ¢ (n) > n/6for all n with at most 8 distinct prime factors.

20



UNIT:IV DIRICHLET PRODUCT OF
ARITHMETICAL FUNCTIONS

Structure

4.1 Introduction

4.2 Objectives

4.3 Dirichlet inverses and the Mobius inversion formula
4.4 The Mangoldt function A (n).

4.5 Exercise

4.1 Introduction:

The two obvious operations on the set of arithmetic functions are point wise
addition and multiplication. The constant functions f= 0 and f= lare neutral
elements with respect to these operations, and the additive and
multiplicative inverses of a function f are given by—f and 1/f, respectively.
While these operations are sometimes useful, by far the most important
operation among arithmetic function is called Dirichlet product, an
operation that, at first glance, appears mysterious and unmotivated, but
which has proved to be an extremely useful tool in the theory of arithmetic
functions.

4.2 Objectives:

The students will be able to

e Derive Mobius inversion formula
e Describe the properties of Mangolt function
e Recognise the Dirichlet inverse of arithmetical functions

Definition 4.1.1:

Let f and g be arithmetic functions. Then, the Dirichlet multiplication of f
and g is denoted by h and is defined as

h(n) = (f * g)(n)

- r@g(3)

d|n
Definition 4.1.2:

The power function n® is an arithmetic function is defined by N%(n) =
n*va

Definition 4.1.3:

The unit function u is an arithmetic function is defined by u(n) = 1 ¥ n.

21
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Dirichlet Product Of rithmetical
Functions Definition 4.1.4:

The identity function I is an arithmetic function is defined by

=[]~

Result:
Express Y.qpn u(d) = [ﬂ as a dirichlet multiplication

Proof:

Suco =[]

din

D u@u(3)=1m

d|n

(u*xwm) =I(n)
pru=1I

Result:

Express ¢p(n) = dey(d)g in dirichlet multiplication.

Proof: ¢(n) = Sapm u(d) >
=D w@nN(3)
din
= (u*N)(n)
pxN=¢
Note:

(F 9 =) f@(3)

dln

= > F@a(©

cd=n
Theorem: 4.1
Dirichlet multiplication is commutative and associative
Proof:

Let f and g be two arithmetic functions

22




Dirichlet Product Of Arithmetical

Toprove:fxg=g+*f Functions
F =) g@Df©
cd=n
= (g* H(n) Notes

fxg)=@=*f)
Hence dirichlet multiplication is commutative.
Let f, g and h be an arithmetic function.
Toprove: f+(g+*h)=(f*g)~h
LHS  =fx(g*h)
=fxA whereA=g=x*h.
(f *A)(n) = Xaa=nf(@)A(d)

= ) @ ) gbh(

ad=n bc=d

< A(d) = (g + h)(d)

= ) gOh©
bc=d

RHS=(f*xg)*h
=B*h whereB=fxg
B+Wm) = ) B@h()

dc=n

= > f@gbh()

abc=n

Hence dirichlet multiplication is Associative.

Theorem: 4.2
For any arithmetic function f we have f x I = I = f = f where | is identity
function.
Proof:
U = Y 1@ (3)
d
din
n n
= > 1f (5)+ Y 1@ (3)
1|n djn

a>1

23
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Notes

=f(m)+0
=f(m
s =f
Since Dirichlet multiplication is commutative.
(fxD=f
frl=Uxf)=f

Hence proved.

4.3 Dirichlet Inverses and Mobius Inversion Formula

Theorem: 4.3

If £ isan arithmetic function with f(1) # 0 there is a unique inverse f~1is
called the dirichlet inverse such that (f = f~1) = f~1 x f = [. Then,

(i) *z%fornzl.

i)y f )= %Z;L?lf(g)f"l(d) forn > 1.
Proof:

()fn=1

Given (f = f~1)(n) = I(n)
(F+f1)1=1(1)

1

Sap (DF(3) = 1

— 1
=i 1(1)=Eforn=1

Since f(1) # 0 so f~1 exists and is uniquely determined.
(if) For n > 1, we have

(F ) = I(n)
> (T Hm) =0

= > F@f (5)=0

din
fRAWIW+ ) HDf (3) =0
din
d<n

== f(3) 1@
dn
24d<n



= f1(n) =%dz|n:f(g)f_l(d) forn > 1.

d<n

Theorem 4.4: Mobius inversion formula

The equation £ (n) = Sqjn g(d) if and only if g(n) = Sy f (u (5)
Proof:
Assume that f(n) = Xqn g(d)
= ; g(du (g)
=(@*wm)
f=g+u
Multiply u on both sides to the above equation, we get
(fxp)=(g*u)*p
=gx*(ux*p) (~ Dirichlet product is associative)
=gx*(u=*u) (~ Dirichlet product is commutative)
=gxl
=8
gn) = (f+xp(n)

=D f@r(3)

din
Conversely assume that, g(n) = X4, f(d) (g)

gm) = (f xwm)
g=f*u
Multiply u on both sides of the above equation, we get

gru=(f*pwxu

=f*u*u)

=f=I

=f
f(n) = (g* w)(n)

25
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Dirichlet Product Of rithmetical

Functions _ Z g(d)u (g)
Notes = Z g(d)

4.4 Mongoldt function

Definition 4.1.5: Mongoldt function (A(n))
For every integer n > 1 the Mongoldt’s function A is defined by

A(n) = {logp if n=p™ for some prime Pandsm > 1,
0 otherwise

Assume that A(1) = 0,whenn = 1.
Note:

n. 1 2 3 4 5 6 7 8 9 10
A(n): 0 log2 log3 log4 log5 O log7 log2 log3 O
Theorem 4.5:

If n>1, X4,A(d) =logn
Proof:
If n=1
L.H.S = X1 A(d)
=A1)=0

RHS=1logl1=0
~ RHS=LH.S
For n>1,
Letn = p,%1p,% ... pr® where P;s are distinct primes and a; > 1.
R.H.S =log(p;“1p,* ... ... i)

= logp,** + logp, %2 + -+ -+ + log pi %

= qaqlogp, + a,logp, + -+ -+ + oy log py

Kk
= Z a;logp;
=1

LHS = Zd|p1“1p2“2.......pkak A(d)

The non-zero items of Y4, A(d) occurs only when
d= (pl,]ol2 ...... pl"‘l), (P2, D22 ... ... D2%2), e, (P PIZ) e oo Di %)
26




L.H.S:

DM@ = AP +AE:2) + @) + AD) + M) + AP)
din

o + A (pi) + Api)? + Api™)

= logp,; + logp, + logp, + logp, +logp, + -+ -+ logp, +
logpk+ logpk+-----+logpk

= aglogpy + azlogpy + o vee e + ay logpy

k

= Z a; logp;

i=1

=R.H.S
Theorem 4.6:
Forn = 1, we have A(n) = Xqpn u(n) logg = —Yamu(d)logd.
Proof:
W.KT YgnA(d) =logn
By Mobius Inversion formula
ie) f(n) = Sapng(@) iff g(n) = Tapn f(@p(3)

Take f =log, g=A in Mobius inversion formula

Then we have

logn = z A(d)

din
o An) = Z u(d)log (g)

din
= > u(@logn— ) u(d)logd

din din
=log Y u(d) - Y u(d)logd

dln din
— log [%] _ Z u(d)logd
din
= - ) u(@logd
djn

27
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Dirichlet Product Of rithmetical

Functions 4.5 Exercise:

1. Prove that ¥4, u(d)log™(d)=0if m=>1
Notes and n has m distict prime factors.
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BLOCK II: MULTIPLICATIVE
FUNCTIONS AND FORMAL POWER
SERIES

UNIT-V: MULTIPLICATIVE
FUNCTIONS

Structure

5.1Introduction

5.2 Objectives

5.3 Multiplicative function

5.4 Multiplicative functions and Dirichilet Multiplicative
5.5 The inverse of a completely multiplicative function
5.6 Liovile’s function 4 (n), The divisor functiona,(n)

5.7 Exercise

5.1 Introduction:

This unit introduces the Dirichlet product of two arithmetic functions. It will
give the set of all arithmetic functions the structure of a monoid. Further,we
will see how the Dirichlet product gives the structure of an abelian group to
the set of all arithmetic functions which do not vanish at 1. The Mobius
Inversion Formula also follows easily from Dirichlet product.

5.2 Objectives:

The students will be able to

o Identify the properties of Liouvilles function

e Describe the difference between multiplicative and completely
multiplicative functions

e Determine the properties of divisor functions

5.3 Multiplicative function

Definition 5.1.1: Multiplicative function:

An arithmetic function f is called multiplicative if f is not identically
zero and if f(m,n) = f(m)f(n) whenever (m,n) =1

Definition 5.1.2: Completely multiplicative function:

29
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Multiplicative Functions
A multiplicative function f is said to be completely multiplicative

if f(m,n) =f(m)f(n) for all m,n.

Example:

Notes

1. Euler’s totient function is multiplicative but not completely
multiplicative.

By the proof of Euler’s totient function
p(mn) = p(m)p(n) whenever (m,n) =1
=~ ¢ iIs multiplicative.

Euler totient function is multiplicative but not completely multiplicative.
@) =4 9@)=1 9@ =2
~9(8) # 9(2)p(4)
4 #2
2.The power series is completely multiplicative.
N*(mn) = m%n®
=N*(m)N*(n) v¥mn
3.The unit function is completely multiplicative.
u(mn) = u(m)u(n) ym,n

4. The identity function is completely multiplicative.

fm=1n=1
Thenmn =1
I(m) =1, In) =1
I(mn) =1

I(mn) = I(m)I(n)
Ifm=1(or)n>1then mn>1

I(m) =1, I(n) =0, I(mn) =0
I (mn) =I(m)I(n)
Similarly m > 1 (or) n=1,m>1, n > 1thenmn > 1
~I(mn) =I(m)I(n) ¥mn
5.Mongoldt function is not completely multiplicative.
If (2,7) =1
A(2)=log2 m=2

30




A(7)=log7 n=7
A4)=0 mn = 14
A(14) #= AR)A(7)
~ Mongoldt function is not multiplicative
Hence Mongoldt function is not completely multiplicative.
6.Mobius function is multiplicative but not completely multiplicative.
Let (m,n) =1
To prove: u(m,n) = u(m)u(n)
Suppose that either m is square free or n is both m and n are square free.
suim) =0, u(n) =0
p(mn) =0
p(mn) = p(m)u(n), (mn) =1
Let m =pipy e oen o pr Where p;s are distinct primes i = 1.2 ... ... k

And  n=q1q; ... ... qx Where g;'s are distinct primes j = 1.2... ...s

mn = piPy ... ... Prq19z - - qs
uim) = (=% pm) = (-1°
u(mn) = (—1)**
= (DD
= u(m)u(n)
=~ Mobius function is multiplicative
Now, u(4) =0
n2) =-1
p(4) # p2)p(2)
0+ (DD
Hence Mobius function is not completely multiplicative.
Theorem: 5.1
If £ is multiplicative then f(1) = 1.
Proof:
Given f is multilplicative.

f(mn) = f(m)f(n), f(m,n) =1
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n=n.1l
f(n) =f(n.1)
= f(n) f(1)
f(1) =1
Theorem: 5.2
Let f be an arithmetic function with f(1)=1. Then

(a)f is multiplicative if and only if

f(p1a1p2a2 ......... pkak) = f(p1a1)f(p2a2) _________ f(pkak) for all pl’imes
p; and all integers a; > 1.

(b)If £ is multiplicative then f is completely multiplicative if and only if
f@*) =[f(®)]* forall primesp and all integers a =1
Proof:

Suppose f is multiplicative

Then f(mn) = f(m)f(n) whenever (m,n) =1

The result will prove by induction on “k”

Whenk =1

f1) = f(p1™)

The result is true for k = 1

We assume that the result is true for all integers< k

(i.e)f (P11 P22 e k™) = f(p1 ") f (p22) oo f (P10 1)

Since p; p,

.......

Now, f (19102 %2 o e D1 6) = f(1 %027 v o DETR1) f (01 5F)
= (") f ©2%) o oo f (O™ f (01 5F)

(by
assumption)

= f( ) f 02%) wenoev . f (oK)

Conversely, assume that
f(1% 0% e p™) = f(@1 ) f (02%) v von s (P ™*)

Claim: f is multiplicative
Let (m,n) =1
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Letm =p,%,p,% ... ... ... pr%k and

= f(p*1p,*2 ... ... pr™O)f(B, B, ... ... B ™)
= f(m)f(n)
=~ f is multiplicative.
Proof of (b):
Suppose f is completely multiplicative.
Then f(mn) = f(m)f(n) ¥mn
Claim: f(p®) = [f (0)]* Va
This will prove by induction on a.
Whena =1
f®@) =1f®I
~ The resultis true fora = 1
We assume that the result is true for all integers < a
ie) f(p*H) = [f(]**
Now, f(p®) = [f(* " (®)]
=f@“ Hf ()
= [f®I1“f®)

= [f»]*
Hence, f(p) = [f(p)]* Va
Conversely, assume that f(p%*) = [f(p)]* Y a

Claim: fis completely multiplicative

Then
f(mn) =
FD19D2%2 oo DK Py St 1 ¥ Pirr L p Ortbrp,  Pra
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= FP1)f02%2) oo o f Ok f (Prear 1Bl ) o f (r 4B f (praaPret) oo f (05P
= f)* f 2% woo . f PR f Prr )P f i )Pt oo oo f(0) % f (0P f (D) P
= F(P1%D2%2 wor e D P s 1 T4 e DR f (Dt PEH o P Bret L pPs)
=fm)f(n)

=~ f is completely multiplicative.

5.4. Multiplicative functions and dirichlet multiplication:

Theorem 5.3:

If f and g are multiplicative. Then (f * g) is multiplicative.
Proof:

Let (m,n) =1

To prove that: f * g is multiplicative

I.e) prove that:

(f *g)(mn) = (f * g)(m)(f * g)(n)
Now, (f * g)(mn) = Sajmn f (d)g ()
The divisor of d f mn can putd = ab.

(Frg)tmmy = > flab)g (=)

ablmn

= r@r@s () (3)

alm
b|n

n

~ f is multiplicative and (a,b) = 1
m
g is multiplicative and (—,—) =

=) f@g(2) > r®a(3)

alm bin
= (fxg)(m)(f+ g)(n)

~ f * gis multiplicative.

Result:

If £ is completely multiplicative and g is completely multiplicative. Then
f * g need not be completely multiplicative.
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W.K.T The unit function u and the power function N are completely
multiplicative.

To prove that (u * N) is not completely multiplicative.

i.e) to prove that (u * N)(p%*) # [(u * N)(p)]“
Consider (u * N)(p) = Ya1 u(d)N (Z)

= W(DNG) + uEND (- d = 1,p)
=p+1
[ N)(P)]* = (1 +p)*
@sME9 =) u@n (%)
dlp®

=u(DN@E) +u@NE*™) +u@HN{P*?) + -
+ u(p®N(D)

=p*+ pa—l F o +1
# (1+p%
(u*N)(p) # [(u*N)(p)]*
Theorem 5.4:
If both g and f * g are multiplicative then f is also multiplicative.
Proof:
The proof is given by contradiction
Assume that, f is not multiplicative
i.e) f(mn) #= f(m)f(n) whenever (im,n) =1

If we choose such a m and n for which the product
mn is as small as possible.

i.e) ab < mn, (a,b) =1
= f(ab) = f(a)f (b)
Case(i):
If mn=1
ie) m=1,n=1
f(mn) # f(m)f(n)

s f() =1

=~ f is not multiplicative
35
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Now, (f * g)(1) = Xq1 f(d)g G)
=f(Mg)

* 1
Since g is multiplicative = g(1) =1and f(1) # 1
= f * g is not multiplicative
=& to f * g is multiplicative
=~ f is multiplicative.
Case(ii): If mn > 1 and mn is the least product for which
f(mn) # f(m)f(n) whenever (m,n) =1

If ab<mn, (ab)=1

m n

flab) = f@f(®) here (.7)=1

Consider (f * g)(mn) = Y.qymn f (ab)g (%)

= ) fabe(5)

ab|mn

= ; f(ab)g(%)+ f(mn)g(1)
b|n
ab<mn

= > f@fmg(3)g(3)+ o

alm
bin
ab<mn

(Since g is multiplicative and g(1) = 1)

m n
= ) f@Ff®)g(3)g(3)+ Fafem) = FIF () + f (mn)

alm
b|n
ab<mn

= (g m)(f *g)(n) — fF(m)f (n) + f(mn)
~(fxg)(mn) = (f * ) (m)(f * g) (M)

(= f(mn) = f(m)f (n) # 0)
~ f * g is not multiplicative.
We get a contradiction.

In both the cases we get a contradiction.
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Hence f is multiplicative.

Theorem 5.5:

If g is multiplicative then its dirichlet inverse g~ is also multiplicative.
Proof:

W.K.T, g * g~ = I where [ is an identity function

The identity function is completely multiplicative.

So, I is multiplicative

~ g = g~ tis multiplicative.

Given: g is multiplicative.

By theorem 5.4, g~lis multiplicative.

5.5 The inverse of a completely multiplicative function:

The dirichlet inverse of a completely multiplicative function is especially
easy to determine.

Theorem 5.6:

Let f be multiplicative. Then f is completely multiplicative if and only if
ft(m) = um)f(n) foralln > 1.

Proof:

Assume that f is completely multiplicative

Let g(n) = pu(n)f(n)

To prove that: f~1(n) = g(n)

(9* N = Lang@F ()

= > w@r@r(3)

din

= > w@fm

dln

= f@) ) u(@)

dn
s

= fmIm)

=1(n) (- fMIm) = fF(DI(A) +0
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gxf=1
ng=f
gn) = f~(n)

Conversely, assume that f be multiplicative and
f~t(m) = un)f(n) foralln =1
To prove that: f is completely multiplicative
I.e) to prove that f(p)* = (f(p))“ forall primepanda > 1
W.K.T frfl=1
(1= Hn) =1(n)

> r@f (3) =1m

din
dzlnu(d)f(d)f (5) =100
Put n = p*

Sape i(@dF@F (5) = 0if n>1
= fEID+EEDfEfFETD +0+-4+0=0
= f(%) = f@) @™
= FOIEf )]
= @ FI° )

=[f()]“

Hence f is completely multiplicative.
Result: What is the inverse Euler’s totient function ?
WKT ¢p=uxN
dpl=ulxN"1
W.K.T, the power function is completely multiplicative
By previous theorem,
N~H(n) = N(m)p®)

= W)
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¢—1 — ,Ll_l * N—l
= (uN) *u
¢~'(n) = ((uN) = u)(n)

= > an@u(3)

dln

= > WdN@)

din

=) u(dyd

din
Theorem 5.7:

Let / be multiplicative. Then Y.q, f (du(d) = [I,n(1 — f(p)) and
hence ¢_1(n) = Hp|n(1 —p).

Proof:

Let g(n) = Xan f(du(d)

= (@

dln
= > tw@u(3)
dln
= (fuxuwy(n)
g=fuxu
Since f and p is multiplicative
~ fu is multiplicative.
W.K.T, u is multiplicative.
fu =u is multiplicative.
~ g is multiplicative.
9@ = ) f@Du(d)
a|p®

= f(Du() + f(Pu) + fPHu@®) + - + f(pM)u(p®)

( sinced
=1p, ... p%)

=1—f(p) (- fismultiplicative,f(1) =1, u(p?) =
u(p*) =0.)
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Let n =p,%1p,% ... ... P where p;’s are distinct primes and a; = 1

gm) = g(p1*1p%2 .. ... %)
Notes
= g(@1“g®2*?) .. ... (™) (- g is multiplicative

=(1-f@))(1=Ff®)) . A= f®1))

= [a-ron

pin
) u@f@ = [a-rm) - ()
din pin

W.KT, ¢ 1(n) = Xynd p(d)

Comparing to (*) we get

p =] [a-m

pln

Definition 5.6: Liouville’s function A(n)

Definition 5.1.3: Liouville’s function A is an arithmetic function is defined
by

AQ) =1andif n=p“...... pr“* we define
7\,(1’1) — (_1)(11+(12+"'+ak
Note:

1) 2% = (~1°
=[(- D)

=~ Hence liouville’s function is completely multiplicative.
Theorem 5.6:

For everyn =1, we have

Zl(d) = {1 if nisasquare

0 otherwise
din

Moreover A~1(n) = |u(n)| for all n.

Proof:

Let g(n) = Xapm A(d)

- z A(d)u (g)
dln

gn) = (A*wn
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Since A and u are multiplicative

A *u is multiplicative

Putn = p“
g™ = ) M)
dlp*

= A1) + A(p) + -+ 2(p?)
=14 (D) + (1) + -+ (=1)°

_{1 if aiseven
0if aisodd

n=p*..... pr** where p;sare distnct primes and a; = 0

gm) = g@*) .. .... g(Pi*)

_ {1 if each a; is even
~ |0 if atleast a; is odd

a; = 2f;
N =% e PR
n=p %P1 .....p 2Pk
_ (plﬁl)z (pkﬁ")z

_(lif nissquare
9(n) = { 0 otherwise

> aa ={! if n is square

0 otherwise
din

W.K.T A is completely multiplicative
A7) = Am)u(n)

= p(m)u(n)

= u*(n)

= |um)|

Definition 5.1.4: For any real or complex @ and any integer n > 1 the
divisor function is defined by o, (n) = X4/, d*

i.e) g, (n) is the sum of the a*™ power of divisors of n.
Note: 1

o,1s multiplicative
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> o,(n) = Z d°

din
Notes _ Z Na(d)u (g)
din
= (N**u)(n)
Note: 2
If a=0
o(n) = d° = 1
oo(n ; ;

The number of divisors of n it is denoted by d(n).
i.e) oo(n) = d(n)
Note: 3
If a=1
01(n) = Xqjn d = sum of the divisors of n
It is denoted by o (n)
~o(n) =a(n)
Theorem 5.7
Forn > 1, we have
07 ) = ) d*u(@u(3)
dfn
Proof:
W.KT 0,(n) = Xgjnd®
_ a n
;N (@ (3)
= (N *u)(n)
WO =N%xu
o, t=(N) Tt xut
Since N¢ is completely multiplicative

(N)™H(n) = N*(m)u(n)
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= (N“w)(n)
& 0,71 (n) = (V%) * ) ()

= > W@ (3)

din

= D (N@ur(3)

din

= > du(@n(3)

din

5.7 Exercise:

1.Assume f is multiplicative. Prove that:

@) f~1(n) = u(n)f(n) for every square free n.
(b) 71 (@*) = f(p)* — f(p*) for every prime p.

2.Assume f is multiplicative. Prove that f is completely multiplicative if and
only if

f~1(p™) = 0 for all primes p and all integers a> 2.

3.If f is completely multiplicative, prove that f. (g * h) = (f.g) * (f. h) for
all arithmetical functions g and h, where f.g denotes ordinary product

(f.9)(n)=f(n)g(n).

4.1f f is multiplicative and relations in (a) holds for g = pand h = u™t,
prove that f is completely multiplicative.

5. If f is completely multiplicative, prove that(f. g)~* = f.g~! for every
arithmetical functions g(1)= 0.

6. If f is multiplicative and relations in (a) holds for g = u~1, prove that f is
completely multiplicative.
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UNIT-VI: FORMAL POWER SERIES

Structure:

6.1 Introduction

6.2 Objectives

6.3 Generalized Convolutions
6.4 Formal Power Series

6.5 Exercise

6.1 Introduction:

This unit gives the idea of convolutions and gives the relation between
associative property of dirichlet multiplication and convolution of any three
arithmetical functions. It derives the Gereralized Mobius inversion formula
by using convolutions.

6.2 Objectives:

The students will be able to

e Analyse the convolution of arithmetical functions

e Describe the properties of convolutions

e Recognise the relation between power series of arithmetical
functions

6.3 Generalized Convolutions

Definition 6.1.1:

Let F be a real or complex valued function defined on the positive real axis
suchthat F(x) =0, 0 <x < 1.

Let a be an arithmetical function then the sum of G(x) = X<« a(n)F(%)
is called the generalized convolutions of G and is denoted by G = (a o F).

(i) (@ F)(%) = Znsx a(MF ().
Theorem 6.1 Associative property for relating with o and *

For any arithmetical function a and 8, we have @ o (Bo F) = (a * ) o F.

Proof:

[@o (BoPIX) = Znsxa(M(B o)
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X

=Ylam Y pemF)

nsx mnsx

= Ymn<x a(n)ﬁ (S) F(%), mn=k

=S amp (5)FC)

k<x nlk

=D @ pWF(3)

k<x
= [(a * B) o F](x)
Therefore [ o (Be F)] = (a*B) o F

Theorem 6.2 Generalized inversion formula

If « has a Dirichlet inverse a~! then the equation G(x) = Znsxa(n)F(i) if
and only if F(x) = Yy @ (MG )
Proof:
LetG =aoF
Then multiply a~* on both sides
aloG=atlo(aoF)
aloG=(a'*a)oF=1cF=F

“F() = (ato G)(x) = Z a”t(n)G (%)

n=x
Conversely, assume that F(x) = Y, a”t (n) G (%)
“F(x)= (a7 o G)(x)
=>F=a1o G (multiply a on both side)
SaocF=ac(aloG)=(axa)oG=10G=G
2 G(x) = (aoF)(x)

G(x) = Z a(n)F (%)

nsx

Theorem 6.3: Generalized Mobius inversion formula

If a is completely multiplicative, then the equation G(x) = Y.<, a(n)F (%)
if and only if F(x) = Tpex a(mu(n)G (3)
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Proof:
Assume that G (x) = X<y a(n)F (%)
G(x) = (a° F)(x)
~G=aoF (multiply a~! on both side)
aloG=atlo(aoF)=(at*xa)ocF=]oF=F
“F) =(a e G)(x)

F(x) = Z a ()G (%)

nsx

FO) = ) amumé ()

nsx

(since a is completely multiplicative)

Conversely assume that, F(x) = ¥, a(m)u(n)G (g)

F(x) = Z a1(n)G (g)

F(x) = (a o G)(x)
~F=a1oG (multiply a on both sides, we get)
aoF=ao(aloG)=(axa)oG=10G=G
2 G = (@o F)(x) = z a(n)F (%)

nsx

Hence the proof

6.4 Formal power series:

In calculus an infinite series of the form
Yoo pa(mx™ = a(0) + a(Dx + a(2)x? + -+ a(n)x™+...

is called a power series in X. Both x and the coefficients a(n) are real or
complex numbers. To each power series there corresponds a radius of
convergence r = 0 such that the series converges absolutely if [x| < r and
diverges if|x| > r.(The radius r can be +oo0).

In this section we consider power series from a different point of view.We
call them formal power series to distinguish them from the ordinary power
series of calculus. In the theory of formal power series x assigned a
numerical value, and questions of convergence or divergence are not of
interest.

The object of interest is the sequence of coefficients
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(a(0),a(1),..... a(n),.....)

All what we do with formal power series could also be done by treating the
sequence of coefficients as though it were an infinite dimensional vector
with components a(0),a(1),...a(n) but for our purpose it is more convenient
to display the terms as coefficients of a power series as in (12) rather than as
components of a vector as in (13). The symbol x™ is simply a device for
locating the position of the nth coefficient a(n). The coefficient a(0) is called
the constant coefficients of the series.

We operate on formal power series algebraically as though they were
convergent power series. If A(x) and B(x) are two formal power series, say

o

A(x) = Z a(n)x™ and B(x) = Z b(n)x™
n=0

n=0
We define:

Equality: A(X) = B(x) means that a(n)=b(n) forall n = 0
Sum: AX) + B(X) = Y oeo(a(n) + b(n))x™

Product: AX)B(X) =XYoo c(n)x™

n

c(n) = z Q0D = k) e o, (14)

k=0

The sequence {c(n)} determined by (14) is called the Cauchy product of the
sequences {a(n)} and {b(n)}.

The reader can easily verify that these two operations satisfy the
commutative and associative laws, and that multiplication is distributive
with respective to addition. In the language of modern algebra, formal
power series form a ring. The ring has a zero element for addition which we
denote by 0.

0 =Y_pa(m)x™wherea(n)=0foralln >0,
And an identity element for multiplication which we denote by 1,
1=Yroam)x™, wherea(0) =1and a(n) =0 forn > 1,

A formal power series is called a formal polynomial if all its coefficients are
Ofrom some point on.

For each formal power series A(x) = Ygo a(n)x™ with constant
coefficients a(0) # 0, there is a uniquely determined formal power series

B(x) = Yo—o b(n)x™such that A(x)B(x)=1. Its coefficients can be
determined by solving the infinite system of equations

a(0)b(0) = 1
a(0)b(1) + a(1)b(0) = 0

47

Formal Power Series

Notes



Formal Power Series
In succession for b(0), b(1),b(2),... The series B(x) is called the inverse of

A(x)
Notes The special series, A(x) =1+ Yp_,a(n)x™

Is called a geometric series. Here a is an arbitrary real or complex number.
Its inverse is the formal power series

B(x)=1-ax

In otherwords, we have

L1+ Y=o a(n)x™.

1-ax

Exercise:

1.Let f be a multiplicative and let g be any arithmetical function. Assume
that

@ f@™) =f@)f @™ —g®)f@E"™) forall primespandalln > 1.

Prove that for each prime p the Bell series for f has the form

(b) fy)-

1 .
1-f(D)x+g(p)x?
Conversely, prove that (b) implies (a).

2. If g is completely multiplicative prove that statement (a) of above
exercise 1 implies

fm)f (1) = Xajmmy 9(Df ),

Where the sum is extended over the positive divisors of the gcd(m,n). [Hint:
Consider first the case m = p%,n = p?.]
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UNIT: VIl BELL SERIES

Structure

7.1 Introduction

7.2 Objectives

7.3 The Bell series of an arithmetic function
7.4 Bell Series and Dirichlet Multiplication
7.5 Derivatives of arithmetic functions

7.6 The Selberg identity.

7.1 Introduction:

This unit explores the properties of multiplicative arithmetical functions
using formal power series. It explains the relation between multiplication of
Bell series to Dirichlet multiplication. It states that the usual rules for
differentiating sums and products also hold if the products are dirichlet
products.

7.2 Objectives:

The students will be able to

e Describe the Bell series of arithmetical functions
e Determine the derivatives of inverse functions
e Derive Selberg identity

7.3 The Bell series of an arithmetical function:

Given an arithmetical function f and a prime p, we denote by f,(x) the
formal power series f,(x) = X5=o f(p™)x™ and call this the Bell series of f
modulo p.

Bell series are especially useful when f is multiplicative.
Theorem:7.1 (Uniqueness theorem)

Let f and g be multiplicative functions then f = g if and only if,
fp(x) = g, (x) for all primes p.

Proof:

If f=gthen f(p™) = g(p™) forall pand alln >0, so f,(x) = g,(x).
Conversely, if f,(x) = g,(x) forall p then f(p™) = g(p™) for alln>0.
Since f and g are multiplicative and agree at all prime powers they agree at
all the positive integers, so f = g.
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Example: 1

Mobius function u. Since u(p) = —1 and u(p™) = 0 for n > 2 we have

pp(x) =1—x.

7.4 Bell series and Dirichlet multiplication:

Theorem:7.2

For any two arithmetical functions fand g let h = f * g. Then for every
prime p we have u,(x) = f,(x)g,(x)

Proof:

Since the divisors of p™are 1, p, p? ... p™ we have
hp™) = Zdlpnf(‘”g (B)= 22, @9 ™).

This completes the proof because the last sum is the Cauchy product of the
sequences {f(p™)} and {g(p™}.

7.5 Derivative of arithmetical functions:

Definition 7.1.1:  For any arithmetical function f we define its
derivative f'to be the arithmetical function given by the equation f'(n)
=f(n)log n for n> 1.

Example: since I(n)logn =0 forall n we have I'=0. Since u(n)=1 for
all n we have u’(n)=log n. Hence, the formula }.4,, A(d)=log n can be
written as

Theorem 7.3:1f fand g are arithmetical functions we have:

) f+9'=f"+g"

by (f*g)=f'xg+f=*g"

¢) (f7YH)'==f"x(f = )71, provide that f(1)#0.
Proof:

The proof of (a) is immediate . of course, it is understood that f+g is the
function for which (f+g)(n)=f(n)+g(n) for all n.

To prove (b) we use the identity log n=log d+log(n/d) to write
(f * 9)' ()=Lam f (D) g () logn
= T f (@) logd g +Tapm f(d)g () log=

= (" * )+ * g")(n).
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To prove(c) we apply part (b) to the formula 1'=0, remembering that
I=f*f~1. This gives us

O=(f * f7Y'= "5 f 4 £ (F7)
So f* (f)==(f'«fD* fl=f «(fTHxf7).
But (f 1«f1)=(f=f)"1 so(c) isproved.

7.6 THE SELBERG IDENTITY

Using the concept of derivative we can quickly derive a formula of selberg
which is sometimes used as the starting point of an elementary proof of the
prime number theorem.

Theorem 7.4: (The selberg identity)
For n =1 we have, A(n) logn + Xqpn /\(d)/\(g) = deu(d)logz(g).

Proof:
WKT A *u = u'. Differentiation of this equation gives us

ANxu+ Axu=u"

Orsince A xu =1u,

ANxu+Ax(Axu)=u”

Now we multiply both sides by 4 = u~? to obtain
A+ A* A= .

This the required identity.

7.7 Exercise:

1.Prove that 6, (m)a,(n) = Xajmmn) 4% 04 (%)

2 Prove that Liouville’s function is given by the formula A(n) =
Zd2|n u (%) .
3.Assume that g is multiplicative and let f=g~1

a) prove that if p is prime and k> 1 we have

f(p*)= Xtz g@OHf @ 9.

b) Let h be the uniquely determined multiplicative function
which agrees with f at the prime powers. Show that h*g
agrees with the identity function | at the prime powers and

c) deduce that h*g=I. This shows that f=h so f is multiplicative.

4.1f f and g are multiplicative and if a and b are positive integers with a> b,
prove that the function h is given by
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h(n) = Taan f (:—a) g (:—b)is also multiplicative. The

sum is extended over those divisors d of n for which d%divides n.

Notes
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UNIT — VIII : AVERAGES OF
ARITHMETICAL FUNCTIONS

Structure

8.1 Introduction

8.2 Objectives

8.3 The big oh notation,

8.4 Asymptotic equality of functions

8.5 Exercise

8.1 Introduction:

Big O notation is a mathematical notation that describes the limiting
behavior of a function when the argument tends towards a particular value
or infinity. It is a member of a family of notations invented by Paul
Bachmann, Edmund Landau is called Bachmann—Landau notation or
asymptotic notation. This unit explores Big oh function and its importance.

8.2 Objectives:

The students will be able to

e Determine Big oh function and its relations
e Recognise the equality of functions
e Describe the properties of Big Oh functions

General Introduction:

The last chapter discussed various identities satisfied by arithmetical
functions such as u(n), ¢(n), A(n) and the divisor functions o (n).we
enquire about the behaviour of these and other arithmetical functions f(n) for
large values of n.

For example, consider d(n), the number of divisors of n. This function takes
on the value 2 infinitely often(when n is prime) and it also takes on
arbitrarily large values when n has large number of divisors. Thus the value
of d(n) fluctuate considerably as n increases.

Many arithmetical functions fluctuates in this manner and it is often difficult
to determine their behaviour for large n. sometimes it is more fruitful to
study the arithmetical mean.

n

y 1
f) =~ f(k)

k=1

Averages smooth out fluctuations so it is reasonable to expect that the mean
value f(n) might behave more regularly than f(n). This is indeed the case
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for the divisor function d(n).we will prove later that the average grows like
log n. more precisely,

loghsew——"=1.....(1)

To study the average of an arbitrary function f need a knowledge of its
partial sum .sometimes it is convenient to replace the upper index n by an
arbitrary positive real number x and to consider instead sums of the form

>
k<x

Here it is understood that the index k varies from 1 to [x], the greatest
integer < x. If 0 < x < 1 the sum is empty and we assign it the value 0. Our
goal is to determine the behaviour of this sum as a function of x, especially
for large x.

For the divisor function we will prove a result obtained by dirichlet in 1849,
which is stronger than (1), namely

Yrex d(k) = xlogx + 2c — Dx + 0(Wx)....... (2)

For all x > 1. Here C is Euler’s constant, defined by the equation
, 1 1

C =11mn_>oo(1+5+---+;—logn) ........... 3)

The symbol 0 (v/x) represents an unspecified function of x which grows no
faster than some constant times +/x. This is an example of “big oh” notation
which is defined as follows.

8.3 The big oh notation. Asymptotic equality of functions:

Definition: If g(x)> 0, for all x > a, we write f(x) = 0(g(x)) to mean

that the quotient % is bounded for x > a; (i.e.,) there exist a constant

M> 0, such that
lf(x)] < Mg(x) forallx > a
An equation of the form
f(x) = h(x) + 0(g(x))

Means that f(x) — h(x) = 0(g(x)). we note that f(t) = 0(g(t)) for
t = a, implies

[Ffwde = o(fF g(tyde) forx = a
Definition:If

Cf)
e il

We say that f(x) is asymptotic to g(x) as x — oo, and we write
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f)~g(x) asx— oo

For example, eq (2) implies that

Z d(k)~xlogx as x — oo.
k<x

In equation (2), the term x logx is called the asymptotic value of the sum;
the other two terms represent the error made by approximating the sum by
its asymptotic value. If we denote this error by E(X), then (2) states that

E(x)=2C—-Dx+0Hx)......... 4)

This could also be written E(x) = O(x), an equation which is correct but
which does not convey the more precise information in eq (4). eq (4) tells us
that the asymptotic value of E(x) is (2C — 1)x.

8.4 Exercises:

(1) Use Euler's summation formula to deduce the following for x
> 2,
logn 1 log x )
Z ——==log°x+A+0 (—) ,where A is a constant.
n 2 X
n<x
(2) Use Euler's summation formula to deduce the following for x
> 2,

1 1
Z nlogn log (logx) + B+ 0 (m) ,where B is a constant.

2sn<x

(3) If x = 2 Prove that

dn) 1., . '
z = Elog x +2Clogx + 0(1),where C is Euler's constant.

nsx

4)If x=2and a > 0,a # 1 Prove that

d(n) x'"%logx 5 a
z = T (@ 4 0,
n<x

x1? x?
(5)If x = 2 Prove that: Y.<, u(n) [Z] =—+ 0(xlog x).

@)
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UNIT-IX:ASYMPTOTIC FORMULAS

Structure:

9.1 Introduction

9.2 Objectives

9.3 Euler’s Summation formula

9.4 Some elementary asymptotic formulas

9.5 The average order of d (n)

9.6 The average order of the divisor function’s a,(n).

9.7 Exercise

9.1 Introduction:

Sometimes the asymptotic value of a partial sum can be obtained by
comparing it with an integral. Eulers summation formula gives an exact
expression for the error made in such approximation. This unit derives the
Dirichlet asymptotic formula for the partial sums of the divisor function

d(n), oa(n) .

9.2 Objectives:

The students will be able to

e Determine the Eulers summation formula
e Describe the asymptotic formulas
e Recognise the average order of d(n)

9.3 Euler’s summation formula:

Theorem 9.1:

If f has a continuous derivative f* on the interval [y, x], where 0 <y <x, then

X X

> i) = [ f@de+ [ = 1) P+ 10K = ) — I - ),
y

y<nsx y

Proof:
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Let m=[y], k=[x]. For any interval (n-1, n) in [y, x], then

f [(1f (©)de = f (n - Df (©)dt

=(n-1 [ f©Odt
n—fl

=m=D[f(n) - f(n—1)]
=nf()-(-Dfn-D}-f(n) - (1)

Summing up for n=m+1,m+2,....k, we have

n m+1 m+2
j[t]f'(t)dt= f [t]f'(t)dt + j [E1f' (©)dt + - o e

k

+ j[t]f'(t)dt

k-1

=(m+Df(m+1)—mfm)—fm+1D)+m+2)f(m+2) -
m+1D)fm+1)—f(m+2)+(m+3)f(m+3)—-(m+2)f(m+
2—fm+34 oo eee e +ruf—k—1/k—1—f (k)

(by using(1))

= kf (k) =mf(m) = f(m+1) = f(m+2) = f(m+3) = = =

—f()

k
» [1r©de =kt -meam - Y

y<nsx

k
> F) = kf () = mfem) - [16]£ e - @
y<nsgx m

Now, [ [[t]f (t)dt = [0 mf (O)dt = mf(y) — mf(m)

y

f (€] F(©)dt — mf (y) = —mf(m) > (3)
j [(f (D dt = k f FOdt = kf (o) — kF ()
k k

kF(k) = kf(x) — j [f(D)de - (4)
k

Using (3) and (4), (2) becomes,
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x y

> ) = k@) = mf o) - [1d f@de+ (e Fode

y<ns<x k m

k
- f (] F(©)de

Notes

k

> Fm = kfG) - mf) = [T f@de ~ [Tl r@de
k

y<nsx . m
- f (] F(©)dt
y
= kf (x) - mf(y) - f (] F(©)dt - (5)
y

X

[r@at =2 -y - [ rwa
y y

[r@ac-xr0+yror+ [rode =0 -
y y
Using (6) , (5) becomes

X

> Fm = 1x1£ 60 = lf 0 = [l @de + 0

y<nsx y

X

> rm = KF60 - lf o) - [lr@de

y<nsx v
x x

+ [ or@de-xr@ +yro) + [ roar
y

y

WG j f(Odt
y

y<nsx

+ f(t — [EDf@®dt + fe{[x] = x} = F{y] = ¥}
y

9.4 Some elementary asymptotic formulas:

Definition 9.1.1: “Euler’s constant”

The Euler’s constant C is defined by C= limn_m{zzl:l% — logn}
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Definition 9.1.2:

Let a be a real number and let f(x) be a function and g(x) >0, then there is &
constant m>0 , such that |f(x)| < mg(x) , for all x > a . Then f(x) is said
to be “big oh” of g(x)

we write f(x) =0(g(x))
Result:
1.

~O(f(x)) + O(f(x)) = O(f(x))

2.

O(f(x)) + O(f(x))= O(f(x))

Let g(x) =0(f(x)) , then there exists m; > 0 such that |g(x)|
<m,; f(x),forallx >a
Let h(x) = O(f(x)) , then there exists m, > 0 such that |h(x)| <
m,f(x),forallx > a

lg(x) + h(x)| < |gQ)| + |A(x)]

< myf(x) + myf(x)
= (my + my)f(x)
=mf (x)

where my + m, =m

g(x) + h(x) = 0(f(x))

[Jo(f)dx = o(f; f(x)dx)

Let g(x) =0(f(x)) , then there exists m > 0 such that |g(x)| <
mf(x),forallx > a

jfg(x) dx

§f|g(x)|dx sfxmf(x)dx

X

[ gerax = o j f(x)d)

a
X X

.-.fO(f(x))dx = O(ff(x)dx)

a

Definition 9.1.3: “Riemann Zeta function”
The Riemann Zeta function is defined by

( 1 ,
s Jifs>1
=1 "
k)11_{{)10( E_l—s) Jif0<s<1
n<sx
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Theorem 9.2:

Ifx>1 We have:

(a) Zn<x logx +C+0 ( ) where C is Euler’s constant.
(B) Tnzx ~= —+ {(s)+ 0(x™),ifs>0,s # 1.

) = O(x1 5),ifs > 1.

(d) Xnexn® =m+0(x“),ifa20.

Proof:
For part (a):

By Euler’s summation formula,
X

> = [ f@de+ [ €= [EDF@de+ F - 2)
y<ns<x y y

—filyl = yi
we take f(t) = m withy = 1 and

1
f'(t) = = in the above formula,

g

1<n=<x
X
1
=j_dt

f{t— ~)de+- {[]—x}—f(l)(l—l)

Z fdt—f{t— }—dt+f{t— }—dt+0(>

1<n=<x

(Adding 1 on both sides we have)

S (UL (R C
| |

nsx

=logx+A+f{t—[t]}ti2dt+0(§> - (1)
where A = 1+f{t—[t] idt

o

1
consider f{t — — 0 dt = <;>

2
X X
equation (1), becomes
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1 1 1
Z—=logx+A+0(—)+0(—)
n X X

nsx

1 1
Z——logx=A+0(—>
n x

nsx

1 1
lim {Z —— logx} = lim {A +0 (—)}
n—oo n n—oo X

nsx

C=A+0

1 1
-'-z—=logx+C+0<—)
n x

nsx

Where C is Euler’s constant.
To prove part (b)

By Euler’s summation formula,

IO j f(Oyde + j (£ = [EDF @Ot + FCO{lx] = x} = FOIy]

y<nsx
-y}
We take f(t) =t—15 with y=1and f'(t) = t;'fl in Euler’s summation
formula,
X X
1
= [ae+ [e- 1 () de+ (-9 - FOA -
1<n<x 1 1
1
D W t—sdt
1<n=sx 1

- [0 G [ G aro ()

(Adding 1 on both sides we have)

1-s

1 (0]
Z; = f_ S TAG)+ f{t — [t]} t5+1) dt + 0(x™5)
~(2)

where A(s) = 1 — 1—15 - f (6= 16D (5) e
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consider f{t — [t]} (t5+1) dt = 0(x™5)

Notes (2) becomes,

1 xl—s
— ] -S
Zns 1_S+A(s)+0(x )

nsx

Case (i): Ifs>1,

-

xl—s
lim ) —= 11m + A(s) + 0(x™5)
s 1-s

n=1
{(s) = A(s)
Case (ii): If0<s<1
1 xt=s
— - =A(s) +0(x™%)
nsxns 1-s
: 1 X7\ s
Jim Z;—l_s = lim (A(s) + 0(x™%))
{(s) = A(s)

1 xl—S ]
Z—: _S+((s)+0(x‘s) ifs>0,s #1.

n® 1
nsx

To prove (c):

We use (b) with s > 1 to obtain

Y =~ Z—=

i n>x n<x
Since x5 < x175.

=) =0(x')

To prove (d):

We take f(t) = t% in Euler’s summation formula with y = 1 and

f'@©) = at*?
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= f t*dt

1

4 f (¢ — [ (@t D) dt + x7{[x] — 1} — F(D) (L

_.1)
X
xa+1 1 )
a _ _ _ a— a
Z n _<a+1 a+1>+af{t [t]}t<dt + 0 (x%)
1<n=<x 1
X
consider f{t — [tP}at® 1dt = 0(x%)
1
(Adding 1 on both sides we get)
xa+1 1
a _ a a
Do = I -+ 0 + 0
n<x
xa+1
— a a a
—a+1+0(x )+ 0(x%) + 0(x%)
xa+1
— a
a+1 06
9.5 The average order of d(n):
Definition 9.1.4:
If limxﬁm% =1, then f(x) is said to be asymptotic to g(x) as x — oo,

It is written by f(x)~g(x) as x — oo.
Definition 9.1.5:
A Lattice point is a point with integer coefficients.

Theorem 9.3: For all x > 1 we have

0 z d(n) = xlog x + 0(x)

(i) z d(n) = xlog x + (2L — Dx + 0(vX),

Where ( is Euler’s constant and hence the average order of d(n) is logn

(i)oy(n) = number of divisors of n = Z 1=d(n)

U n
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Zd(n)=2 21_21 S ()

n<x n<sx d/
d<x

(since % = n =qd whereq € Z)
qd = n represents the rectangular hyperbola in the (q, d) plane .

The sum in (1) is actually the number of lattice points on the
rectangular hyperpola qd < x,1<q < g.

For a fixed d, the sum is same as the number of lattice points in the
rectangular hyperbola, then sum over all d < x, we have,

.-.Zd(n)=2 21_2 ~+ o)

ns<x dsx q< dsx

(by using theorem 9.2 with a=0)

1
=X (logx +7(+0 (;)) + O(x + 0(1))
=xlogx +{x+0(1) + 0(x) +0(1)
= xlogx+ 0(x) +0(x) + 0(1)
= xlog x + 0(x)
Taking limit and divided xlog x on both side we get,

d(n)
C (Zasm\ 1
Im|——|=1lim|(1+4+0 ( ) =1
x-o | logx x—00 log x

d(n) |
. 0g x

nsx

d(k) |
. 0g x

k=<x

Hence the average order of d(n) islogn

(LL)Zd(n)_221—Zl - (2)

n<x n<xd/
qd<x
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The sum (2) is equivalent to the number of lattice points in the region
bounded by gd = x,q=1andd = 1.

The total number of lattice points in the region is equal to the number belowj
the line g = d plus the number on the bisecting line segment.

L) dm = ) 2 (() >+(f)

n<x d<vx
= 3 2((3) - 0w - d)+ ()
dsvx
= {Zx z %—20(1)—2 z d}+(\/§)
d<vx d<vx

_Zx{log\/_+c+0<\/1_>+0(1) 2<(‘/_) +0(\/_)>}+(\/§)

= xlogx + 2cx + 0(vx) + 0(1) —x + 0(1) + (Vx)

=xlogx + (2c — )x + 0(x)

Z d(n) = xlogx + (2c — Dx + 0(v/x)

nsx
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< d(n 2c—1)x x
further, M=1+¥+0 Vx
xlogx xlogx xlog x
Notes (2c - 1) 1
=1+ +0
lng <J}]0gx
Znsxd() _
= logx as x - o
x
d(k)
Z—Elogn asn— o
k=sn n

~ Average order of d(n)is = logn.

9.6 The average order of the divisor functions o, (n):

Theorem 9.4:

For all x > 1 then we have Y, .,0.,(n) = %((Z)xz + O(xlog x) and

hence the average order of o;(n) is (%)

Proof:

0,(n) = The sum of dividors of n = Z d

d/n
Som=YYa

n<x n<x d/n

DIER

n<x q/n q,d
qdsx

(since q/n >n= qd)

=21 2,

dsx x

-y 8o

ds<x

_xzzl_l_o Zl
WA */ld
dsx

dsx

_ x;{fl__zz +{@+ O(x‘z)} +0{x(logx +¢ +0 <1>>}

X
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- ((ZZ)x — g +0 G) + O(xlog x) + 0(cx) + 0(1)

{(2)x?
=— + O0(xlog x) + O(xlog x) + O(xlog x) + O(xlog x)

2
= ((Zz)x + 0(xlog x)

We know that {(s) = Z?’fﬂ% Jifs>1

(2)_w1_1+1+ n?
(2= 212 22 6
n=1
(by Fourier series)
m2x?
Z o,(n) = + 0(xlog x)
n<sx
Z J1(n)
n<x
noo | T
12
i 3 7
n—oo x 12
n<x
Zal(k) mx
=—— asn —»> o
& n 12

2
- Average order of oy(n)is = asn - oo
Theorem 9.5:

If «a>0,a#1and x>1 then we have Y, 0,(n) = ch:) atl 4
0(x?)

Where f = max {1, a}
Proof:

aa(n>—2d“—2q

Un

Sam=Y Y=Y

n<x nsx q/n
qd<x
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23]
(©5) ol

T g
Tav1Laet T U\t L
<X

dsx

dsx

xatl lxl—(a+1)

=TT +{(a+1)+0(x—“—1)l

<x“ (x:a +2(a) + 0(x“)>>]

{(a+ 1)x*+! x 1 x .
- a+1 _(a(a+1))+0(a_+1)+0(m)+0(x ¢(a))

+0(1)

B x®*t1(a+ 1)

7+ 1 +0(x)+0(x) +0(x) + 0(x%

a+1
z o,(n) = % +000) +0(x%)

nsx

If O<a<l x*<x

If x=>1, a>1, x<x“%

a+1
Z oa(n) = %_'_a;l) + 0(xF)

nsx

where B = max{1, a}.
Theorem 9.6:
If B>0let5 =max{0,1— B}. Thenif x > 1 we have
Z o_g() =J(B+Dx+0(x%) iff#1,

={(2)x + 0(logx) ifB = 1.
Proof:

We have
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RTINS I

nsx nsxd/n dsx qsx/d
NI o) L (52
=) wlaroml=x) gm0 ) 55)
dsx dsx dsx

The last term is O (log x)if = 1 and 0(x®)if £ # 1. Since

1 1-p
xz T x_ﬁ +{(B+Dx+0(x7F) =¢(B+ Dx +0(x'F)

dsx

This completes the proof.

9.7 Exercises:

(1) If x = 1 prove that:

@ o =3 > um [ +3

(m;%P=;¥?E

) If Z p(n)n™% = 1/“0‘) if « > 1, Assuming this, prove that for x

n=1

>2anda > 1,

o) x* 1 -1
T ) O

nsx

a # 2,we have

@)  x*7¢
n® 2 -—af(2)

(3) Ifa < 1 and x = 2 prove that Z + 0(x*"*logx)
ns<x
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UNIT — X: LATTICE POINTS

Struture

10.1 Introduction

10.2 Objectives

10.3 The average order of ¢ (n)

10.4 An application to the distribution of lattice points, visible form the
origin

10.5 The partial sums of a Dirichlet product

10.6 Applications to u (n) and A(n) Another identity for the partial sums of
a Dirichlet product.

10.7 Exercise

10.1 Introduction:

This unit initiates the concepts of average order of Euler totient function and
it introduces the notion of lattice points and its application towards the
distribution of lattice points visible from the origin , further it describes the
partial sums of a Dirichlet product and it provides brief demonstration on
Legendre’s identity and Mangoldt function.

10.2 Objectives:

The students will be able to

o ldentify the average order of Eulers totient function
e Describes the partial sums of a Dirichlet product
e Determine the identity of Mangoldt function

10.3 The Average order of @(n):

Theorem:10.1  For x >1, we have ), ,<, o(n) = %xz + O(xlogx), so

. 3n
the average order of @(n)is —

Proof: The method is similar to that used for the divisor functions.

To prove this theorem we need the following lemma.

Lemma: Let f and g be the arithmetical functions and F(s) = ;‘;’zlfr(;l)

G(s) = X5 £ then F(5)G(s) = Xo, "

ns

and

whereh=f *x g

Proof: F(s)G(s) = ( %ozlf(n))( %;1@)

ns ns

- (222
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=< (FMg) + 5 (FR)g(D) FWg(2)) + -

- i S e

n=1 d/n

=2 = (f <))
=5 L h(n)

Hence the Lemma.

Take f(n) = u(n) and g(n) = u(n) in the above lemma Therefore

F()_Z“( ) dG()—Zu(n) i%zC(s) ifs>1
n=1

A = () = 10 = {3 7 2 ]

h(n)
nS

(n) Z I(m)

n=1 n=1

we know that, F(s)G(s) = Yoy

[0e]

If =2 ,z,?zl“fl’;)q(Z) -1

o HM) _ _
n=1z =7 (Z)Where ¢ (2=
p(m) 6
nz 2
n=1
pu(n) pn) 6
n? n? 2
n<x n>x
pn) 6 u(n)
nz @z n?
n<x n>x

=1

We know that ¢ (n) = Zd/n.u(d)g
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ns<x n<x \d/n
Notes D o= (2 u(d)q>
ns<x qsg d/n
= > u@| >
dsx qsg

X2 <0 p(d) u(d)
AT +0<"27)
dsx dsx
x% /6 1 1
= 7(?‘0@)”("25)

d<x

_ 3 o(x)+0 (1 + C+0<1>>
== > x (log x .
3x?

3x?
z p(n) ey + O(x logx)

nsx

_ Znsx@ _ 2 logx
Im|————|=1lim|(1+0

3x 3x

n—oo - n—oo
2

p(n) 3x
x 2

nsx

Hence the average of @(n) = 3—:

V[

10.4 An application to the distribution of lattice points visible
from the origin:

The asymptotic formula for the partial sums of ¢(n) has an interesting
application to a theorem concerning the distribution of lattice points in the
plane which are visible from the origin.
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Definition 10.1.1 : Two lattice points P and Q are said to be mutually
visible if the line segment which joins them contains no lattice points other
than the end points P and Q.

Theorem 10.3 : Two lattice points (a,b) and (m,n) are mutually visible if,
and only if, a-m and b-n are relatively prime.

Proof: Itis clear that (a, b) and (m, n) are mutually visible iff (a-m, b-n) are
mutually visible from the origin. Hence it sufficies to prove the theorem
when (m. n)=(0, 0).

Assume that (a, b) is visible from the origin, and let d=(a, b). we wish to
prove that d=1. If d> 1 then a=da’, b=db! and the lattice points (a’, b') is
on the line segment joining (0, 0) to (a, b).This contradicts the proof that
d=1.

Conversely, assume that (a,b)=1. If a lattice point (af, b) is on the line
segment joining (0, 0) to (a, b) we have

al = ta, b =th, where0 <t <1.

Hence t is rational, so t = E where r, s are positive integers with (r, s)=1.
Thus sal =ar and  sb! =br,

So s/ar,s/br.But (s, r)=1s0, s/a and s/b. Hence s=1 since (a,b) =1.
This contradicts the inequality 0 < t < 1. Therefore the lattice point (a,
b) is visible from the origin.

There are infinitely many lattice points visible from the origin and it is
natural to ask how they are distributed in the plane.

Consider a large square region in the xy-plane defined by the inequalities

|x| <r, |yl <r.Let N(r) denote the number of lattice points in this
square, and let N(r) denote the number of lattice points in this square, and let
N!(r) denote the number which are visible from the origin. The quotient
NI(r)/N(r) measures the fraction of those lattice points in the square
which are visible from the origin.

Theorem:10.4 The set of lattice points visible from the origin has density
°
77,'2

Proof : consider the large square region |x| < r and |y| < r bounded by
the lines y = +r is dividing the axes in to 8 symmetrical regions.
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The 8 lattice points are visible from the origin they are (1, 0), (1, 1), (0, 1), (-
1,1), (-1, -1), (0, -1), (-1, 0) and (1, -1). X is bounded by the lines 1 < x <
randyisboundedby 2 <y <«x.

Let N'(r) denotes the number of lattice points visible from the origin .

N’(r)=8+8<z Z 1

1<x<r 2<ys<x

3x2

We know that Y., @(n) = —* O(x logx)

2

3r2
=8 -z + O(r logr)

2412
= + O(r logr)

The total number of lattice points in the square region is,
N(@)=Q[r]+ D?and[r] =r—{x}<r—1
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~N@)=4r2+0Q1)
NG zgz + 0(r logr)
N(r)  4r2+0Q)

6 lo
_ & 4o (8
r

y N'(r) im [+ 0(logr>
St N(r) row | 72 r

10.5 The partial sums of a Dirichlet product :

Proof: Define u(x) = {

Theorem:10.5 Let f and g be arithmetical functions and let h = f x g and
let F(x) = Znsx f(n)v G(x) = Znsx g(n) and H(x) = Znsx h(n) then

H() = Tz f()G (3) also H() = Tuer F (2) g(n).

lifx=>1
0if0<x<1

Given F(x) = Yp<x f(0)

= ) fou(3)

nsx

=(f o W)

Let F=f o u similarlyG=g cu and H=h o u

foG=fo(gow

= (f * g) o u (Associative property)

=hou(h=fxg)=H
H@) = (f © 6)(@)

= > 16 ()

geF=g°(-uw
=(gx*xf)ou
= (f * g) o u (xis commutative)

=hou=H

HE@ = (g ° @ = ) g (%)

nsx
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Hence the theorem proved.
Theorem:10.6 For x > 1, we have

DO f@=) fmw[]=>F()

nsxd/n n<x n<sx

Proof: Put g(n)=1 in theorem 10.5,

6(x) =Z1 ~ [x]

nsx

gm) =1 = un)(unit function)

Buth =/ «u, h(n) = (f *w)() = La/n f(Du (2)

= ) f@

d/n
DY f@ =) hm) =)
nsxd/n n<x
LOEWIOTE
LY@ =) w6 (3)
ns<xd/n n<x

10.6 Applications to u(n) and A(n):

Theorem: 10.7

For x > 1,we have (i) X<y (1) [ﬂ =1
(il) Znex AG) [£] = loglx]!
Proof: (i) put f(n) = u(n) intheorem 10.6, we have

D[] =>> u@

n<x n<xd/n

- 21

nsx

=Z[(n):1

nsx

(i1) Put f(n) = A (n) in theorem 10.6, we have

S -y

n<x n<x d/n
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= ZIOgn

nsx
=logl +log2 + ---logx
=log(1.2.....x)
= log([x]")

Note: The sums in this theorem can be regarded as the weighted average of
the functions u(n) and A(n)

Theorem: 10.8 For all x > 1, we have |2nsx@| < 1, with equality
holding only if x < 2.

Proof: If x < 2 By previous theorem,

D um ] =1

nsx

1= Fneet(m) (5 - £})

= x @— > um {7}

nsx nsx

X Bnex B0= 14 Tz u(n) {}

n

|x2nsx¥| = |1 + Yn<x (1) {%}l

<1+ Z,u(n){%}‘
X
=1+{x}+2<z< &
<1+ ()+ Z 1
e
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Theorem: 10.9 Legendre’s identity

For x > 1,we have [x]! = [],<, p*?®’ where the product is extended over
all primes < x, and a(p) = ¥%_, [pim

Proof: We know that ¥, A(n) E] = log[x]!

Putn = p™log([x]) = Ypme A(P™) [pim]

=D voer ). [

p<x

Where, a(p) = Ym-1 [pim]

— 2 log pe®

p<x
loglx]! = log(| [p®)
p<x
= | [

psx
Hence the theorem proved.
Theorem: 10.10
For x = 2,we have log[x]! = xlogx — x + 0(logx) we have,

Z A(n) [%] = xlogx — x + O(logx)

nsx

Proof: Put f(t)=log(t) in Euler summation formula with y=1

X X 1
Z f(n)=j logtdt+f (t—[t])?dt+logx([x]—x)—0

1<n=<x
*1
=xlogx—x+1+0 <J ?dt> + 0(logx)
1

Adding 1 on both sides we get,
Z logn = xlogx —x + 2 4+ 0O(logx) + O(log x)
n<x '

=xlogx —x+0logx)............... (1)
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since,z logn =log[x]!

nsx

(1)becomes, log([x]") = xlog x — x + 0(log x)

x
Therefore, z A(n) [E] = xlogx — x + O(logx)

nsx

Hence the theorem proved.

Theorem:10.11  For x > 2, we have Y, A(p) [g] = xlogx + 0(x)

Proof: WKT, Y.< A(n) E] = log[x] !

log[x] ! = prA(p’") [pim]
= > > rem ]
pM<x
=Y+ e[
p<x DX
D 4[] = toglxl - ;Zzzzl"g(f’) =)

< log[x]! — z logp Z:L:z [pim]

p<x
gl =x Y toap )\ [
= log[x]' —x 0 —
g gp me Lp™
D<xX
=l0g[x]'—x2logp [—2+—3 ]
p<x
1
= log[x]'—leogp —2[1+—+ ]
psx
1 1
= log[x]'—leogp — T
p<x _1_;
pZ
= | — i
log|x] leogp > |p = 1]
D<xX
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= loglx]t—x ) | ! 1]
= log[x]!' — x ngpzp—l

psx
= log[x]! — 0(x)
We know that,  log[x]! =xlog x — x + O(logx)

= xlog x —x + 0(logx) — 0(x) = xlog x + O(x)

Z A(p) [%] = xlogx + 0(x)

nsx

Hence the theorem proved.

Theorem:10.12 If a and b are the real numbers such that ab = x then

D f@g@ =Y fm6(>)+ ) g (3) - F@G®)
q,d

n<a ns<b
qdsx

Proof: Let F(x) = Ypex f(N), G(x) = Xn<x g(n) and

H(x) = Y<x h(x)whereh = f * g and f, g are arithmetic functions.

HE) = ) (f * )

nsx

=> > r@g(3)

n<x d/n

bt ==

84—
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=Y ga f(A)g(@)........... (D

qdsx

Since a and b are positive real numbers such that ab=x then (a, b) is a point

on the rectangular hyperbola qd=x

The sum H(x) in (1) is extended over lattice points in the first quadrant of
(g, d) plane, below the rectangular hyperbola between the two lines d=1,

g=1.

Since the point (a, b) splits the region in to three parts A, B and C.

Now the sum in the region A U B is,

Z @@ =) ) 1@ ()

qd<x dsa <X
=X @) g5
d<a qsg
= dzsaf(d)c )
= 2,16 )

The sum in the region B U C is,

Z HOUOEDIWION

qs<b d<—

ZQ(Q)F< )

qsb

=D F(5)am

ns<b

qd<x

The sum in the region B is,

> f@g@ =) > fdg@

qds<x d<a q<b

=) f@d) 9@

d<a qs<b
= F(a)G(b)

Thus, H(x) =Y ad fdgq@)
qds<x
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= The sum in the region (AU B) + The
region (B U C) — The region B

Y f@g@ =) fm6(2)+) gmr (3) - F@6®)
q,d

n<a ns<b
qds<x

Hence the theorem proved.

10.7 Excercise:

1. Letop;(n) =nXg/mluld)|/d Prove that ¢, is multiplicative and
that @;(n) = n,/m(1+p™")

2. Provethat ¢;(n) = Y42/, u(d)o (%) where the sum is over those
divisors of n for which d?/n

3. Prove that ¥,y @1 (1) = Y ey t(d)s (%) where

s(x) = Z a(k)

k=<x
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UNIT XI: CONGRUENCES

Structure

11.1 Introduction

11.2 Objectives

11.3 Definition and Basic properties of congruences

11.4 Residue classes and complete residue systems

11.5 Linear congruences

11.6 Reduced residue systems and the Euler - Fermat theorem.

11.7 Exercise

11.1 Introduction:

A congruence is nothing more than a statement about divisibility. The
theory of congruences was introduced by Carl Friedreich Gauss. Gauss
contributed to the basic ideas of congruences and proved several theorems
related to this theory. We start by introducing congruences and their
properties. We proceed to prove theorems about the residue system in
connection with the Euler ¢-function.

11.2 Objectives:

The students will be able to

e Describe the properties of Congruences
e Determine Euler Fermat theorem
e Identify the reduced residue system

11.3 Definition and basic properties of Congruence:

Definition 11.1.1:

Given integers a, b, m with m > 0, we say that a is congruent to b modulo
m, we write

a =b(modm) ie) m/a—>b
m is called the modulus of the congruence.
Note:
(i)a=o(modm) iff m/a
(ii)a = b(mod m) iffa — b = 0(mod m)

(iii)m does not dividea — b = a # b(mod m). Itis called incongurent
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Examples:

()19 = 7(mod 12) = 12/., =12
Notes /19 7 /12

(ii)32 = —1(mod 5) = 5/9 112 5/10

Theorem 11.1:

Congruence is an equivalence relation , That is

(i)a = a(mod m) (reflexive)

(ii)a = b(mod m) then b = a(mod m) (Ssymmetry)
(iii)a = b(mod m) and b = c(mod m) = a = c(mod m) (transitivity)
Proof:

(i)Ifa = a(mod m)

m/a—a=m/0

(ii)Ifa = b(mod m) and b = a(mod m)

m/a—Db then m/b —a

(iii)Ifa = b(mod m); b = c¢(mod m) = a = c¢(mod m)
if m/a—band m/b—c=>m/a—c

Theorem 11.2:

If a = b(mod m) and @ = f(mod m) then we have
(i)ax + ay = bx + Py(mod m) for all integers x and y
(ii)ao = bp(mod m)

(iii)a™ = b™(mod m)for every positive integer n
(iv)f(a) = f(b) (mod m)

for every polynomial f with integer coefficient.
Proof:

(i) Given a = b(mod m) and a = f(mod m)

m/a _p and m/a _ pwe have

= m/x(a—b)+y(a—p)

(using linear property)

=>m/(ax + ay) — (bx + By)
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=(ax + ay) — (bx + By) = 0(mod m)
~ ax + ay = bx + fy(mod m)
(i)aa = bB(mod m)
=aa — b = 0(mod m) > m/aa — b
Consider aa — b = aa —ab + ab — b = a(a—b) + b(a — )
= m/a(a—b) +b(a— L) = m/aa —bp
Hence aa = b (mod m)
(iii)To prove: a™ = b™"(mod m) , ie) to prove that m/an _pn
Givena = b(mod m) = m/a—b
a®—=b"=(a—-b)(@"+a"%h+ -+ b1
m/(a—b)(@ ' +a""%h+ -+ b""1)
m/a™ — b"

(iv) To prove: f(a) = f(b)(mod m)
Where f is a polynomial

f(x) =co+ c1x + cx% + -+ + cpx™

f(a) =cy+cia+ca® + -+ cpa™

f(b) = co + c1b + c3b% + -+ + ¢, b

(@ = Fb) = c1(a—b) + cp(a® — b2) + -+ co(a — b™)
=c(a—b) +cy(a* —b?) + -+ cp[(a—b)(@ * + -+ b1
(by (iii))
(1) = f(a)—f(b) =0(mod m)

Hence f(a) = f(b)(mod m)
Theorem 11.3:
If ¢ > 0, then a = b(mod m) if and only if ac = bc(mod mc)
Proof:
Assume that a = b(mod m) = m/a —b
Now we take a = b(mod m) ,c > 0 ac = bc(mod mc)
Conversely, Assume that ac = bc(mod mc)
To prove that: a = b(mod m)

mc/ac — bc
85
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Congruences
=>mc/(a—b)c = m/a—>b

(by cancellation law of divisibility)
~ a = b(mod m)

Notes

Theorem 11.4: ‘Cancellation Law’
If ac = bc(mod m) and if d = (m,c) then a=b (mod %)

Proof:

Assume that ac = bc(mod m) and if d = (m,c)
. _ m
Toprove:a=b (mod E)
Given ac = bc(mod m)=>m/ac — bc
=>m/c(a —b)
m Cc

Givend = (m,c)=1 = (E’ E)

By Euclid’s Lemma {If ¢/, . and (a,b) = 1 then %/}
=>=/=(a—b)=>=/(a~b)

_ m
Hencea = b (mod E)

Theorem 11.5:

Assume a = b(mod m) ifd/m and d/athend/b

Proof:

Leta = b(modm) = m/a—>b

Given d/mand m/(a — b)

(by transitive property)

d/a—Db;

a = b(mod d),b = a(mod d)

Let d/a;a = 0(mod d) = b = 0(mod d)
~d/b

Theorem 11.6:

If a = b(mod m)then (a, m) = (b, m). In other words numbers which are
congruent mod m have the same gcd with n
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Proof:

Assume that a = b(mod m)

Letd = (a,m) and e = (b,m) Now d = (a,m)
=d/a ,d/mthend/b( by theorem 11.5)
=>d/(m,b) =d/e - (1)

Nowe = (b,m) = e/b,e/m.

Then e/a (by theorem 11.5)

=e/(m,a) =e/d - (2)

From (1) and (2) we get

d/e and e/d=>d=e = (a,m) = (b,m)
Theorem 11.7:

Ifa=b(modm)andif0 < (b—a) <mthena=»>b
Proof:

Toprovethata = b

Using congruent definition m/|a — b|

m < |a—b| moreover|a—b|#0
m<|b—al moreover|b—al|#0
Ib—al]=0=>b—-a=0=>b=a

~a=b

Theorem 11.8:

We have a = b(mod m)ifand only if a and b give a same remainder
when divided by m.

Proof:
By division algorithm

Then there exists a positive integer g, Q and r, R such that a = mq +
r, where 0 <r<mandb=MQ+ Rwhere0<R<M

Now, a = b(mod m) & m/a—»b
om/(mg+r)—(MQ+R)eM(@—Q)+r—R=mt
(where t is an integer)
S Mg—MQ+r—R=mt

©r—R=mt—-Mq+ MQ
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©r—R=M({t—-—q+Q) (Wherek = (t —q+ Q))
& r— R = Mk (where k is a integer)
& m/r—R & r = R(modm)
Notes
< r=R (bytheorem11.7)
Theorem 11.9:

If a = b(mod m) and a = b(mod n)where (m,n) = 1,thena =
b(mod mn)

Proof:

Given a = b(mod m)

a = b(mod n)

By definition of congruence a = b(mod m)
=>m/a —b;a =b(modn) = n/a—>b

By the divisibility property mn/a — b

a = b(mod mn)

11.4 Residue classes and complete residue systems:

Definition 11.1.2:
“Residue class”

Consider the fixed modulo m > 0, the residue class is denoted by a. The
set of all integers x such that x = a(imod m).

>
Il
~

x/x = a(mod m)} = {x/m/x — a}

Example:

(i)x = 3(mod 5)

Theorem 11.10:

For a fixed modulo m > 0, we have
()4 = b iffa = b(mod m)

(ii)Two integers x and y are in the same residue class iff x = y(mod m)
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(iii) The m residue class 1T, ... ... ,m are distinct and their union is the set of all integers.

Proof:
(i) Assume 4 = b

a={x/x=a+mq, q=0,1+1,12,.....}

b= {x/x=b+mr, r=0,1£1,12,.......}
Sa+mqg=>b+mr
©a-b=mr—-mgea—b=m(r—q)

(sincer,q is an integer)

om/a—b <a = b(mod m)

(ii)Assume that x and y are in same residue class

x = a(mod m) - (1)
y = a(mod m) = a = y(mod m) - (2)
(By symmetric property)

From (1) and (2)

x = y(mod m)  (since transitive property)

Conversely, Assume that x = y(mod m)

y = x(mod m) - (3) (Bysymmetric property)

We claim that, two integers x and y are in same residue class.

Suppose x €4,y € b

x = a(mod m) - (4)

y = b(mod m) = (5)
From (3) and (4)

y = a(mod m) - (6)

(6) =y € A

Whichisa=«

Hence two integers x and y are in same residue class.

(iii)let 1, jaretworesidueclass. 1 <i<m,1<j<m

To prove that: the residue classi and j are disjoint
ie)inj=0

Suppose thati N j # @
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letx=1INj;x€land x€j

By the definition of residue class

x = i(modm) = i = x(mod m) — (1) (by symmetry)
x = j(modm) - (2)

From (1) and (2)

i =j(modm) =1i=7] (by(iii))

Which is a =2«

Let k be any integer

By division algorithm there exists g and r suchthatk = mq +r,0 <r <
m=mq=k-—r

= m/k —r (q is the set of integers)
= k = r(mod m)
Hence the union of all m residue class.
Definition 11.1.3: “Complete Residue System”

A set of m representatives, one from each of the residue classes 1, 2,...,m is
called a complete residue system modulo m.

Example:

Any set consisting of m integers, incongruent mod m is a complete residue
system mod m.

For example (1, 2,..., m); (0, 1, 2, ...., (m-1)); {1, m+2, 2m+3, 3m+4, ...... ,
m?}

Theorem 11.11:

Assume that (k,m) = 1, if {ay, a,, ... ...., @y, } IS @a complete residue system
mod mso is {ka, ka,, ... ...., ka,;}

Proof:

Given (k,m) = 1{a4, a,, ... ...., a;, } is a complete residue system mod m

By definition of a;#a;(mod m)

To prove:{kal,kaz, ey kam} is a complete residue system
That is to prove ka;#ka;(mod m)

Suppose ka; = kaj(mod m)

Since (k,m) =1
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a; = aj(mod m)
Whichisa =«

~ ka;#Eka;(mod m)

11.5 Linear congruences:

Definition 11.1.4: “Linear congruence”

Given integers a, b, m with m > 0 and x is an unknown integer then the
linear congruence is of the form ax = b(mod m) is said to a linear
congruence

Example:

7x = 3(mod 4)

for x=1,7 = 3(mod 4)
Theorem 11.12:

Assume that (a, m) = 1 the linear congruence ax = b(mod m) has exactly
one solution.

Proof:

Given (a,m) =1

To prove: ax = b(mod m) has exactly one solution
Now, Assume that ax = b(mod m) has an solution
Since (a,m) = 1, by using theorem 11.11

= {1, 2, .......,m}is an complete residue system

= {a,2a,..... ,ma}is the product of a

Since (a,m) =1,

= {ay, .. ... , A, }is an complete residue system

The linear congruence ax = b(mod m) has exactly one solution.
Theorem 11.13:

Assume (a,m) = d then the linear congruence ax = b(mod m) has a
solution if f d/b

Proof:

If a some exists then d/b

Since 4/, and 4/,
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Conversely, if d/b is congruence

~x = b(mod m)has a solution (%%) = 1and this solution is also a

solution of linear congruence.
Notes

Theorem 11.14:

Assume (a,m) = d and suppose that d/ p then the linear congruence

ax = b(mod m) has exactly d solutions mod m, there are given t, t +

%, t+ sz’ ...... Jt+ (d— 1)% where ¢t is the solution, unique modulo % of
the linear congruence ~x = S(mod =)

Proof:

(i) The solution of ax = b(mod m) is equivalent to the solution of

Zx = Z(mod m)

d

Let t be the solution of %x = Z(mod m)

a b mat b

EtEE(mOdm):'E 773

at b m

ﬁg—azgk, where k € Z
atd_b = mTk = m/at — b =>at = b(mod m)

tbe the solution of ax = b(mod m) is equivalent to the solution of

X =

QU T

(mod m)

(ii) To prove ¢t + %, t+
of modulo m.

...... ,t+(d—1)= has exactly d solution

Suppose that ¢ + %, t+ % are the disjoint solution of ax = b(mod m)
a (t + %) =b(modm) 0<r<- (1)and

sm
a(t+7)5b(modm) 0<s<d

b=a (t + %) (mod m) - (2) (by commutative)
From (1) and (2)

a(t+%)za(t+%)(modm)

4=t + = (mod
7= 7 (mod m)
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rm sm
=>m/t+7—(t 7)
™rmm sm
ey
:>T'm Sm_ k:}r_s—k
d da " d

>r—s=dk>d/r—s
= r = s(mod m) 0<|r—s|<d
(By theorem 11.7)
r=s

Whichisa=«<tot + %, t+ %are the disjoint solution of ax =
b(mod m)

Sttt sz’ ...... ,t + (d — 1) Zhas exactly d solution of modulo m.
(iii) To prove there is no solution except t,t + %, t+ %m, ...... ,t+(d—

n=
Let y be the solution of a = b(mod m)
ay = b(mod m) - (3)
Since t be the solution of a = b(mod m)
at = b(modm) = b = at(mod m) - (4)
From (3) and (4)

ay = at(mod m) = m/ay —at => m/a(y —t)
m ,a
—/=(y—t
=>—/70-1
. 15 .m , m a\ _
By Euclid’s lemma: E/(y —t) (smce (E’E) = 1)

m
>y—t=—k - (5)

By Division algorithm, there exists an integersq and r such that k = dq +
r 0<r<d.

1

dq=k—r :>q—k—r(a>
- . m m
Multiply m on both sides mq = k—r(g) :m/k—r(z)

K
:m/%—%zy—tz%(modm)

93

Congruences

Notes



Congruences

Notes

mr
:>y5t+7(modm)

Hence there is no solution except t,t + %, t+ %m, ...... ,t+(d—-1)—.

Theorem 11.15:

If (a, b) = d there exists integers x and y such that ax + by = d
Proof:

The linear congruence ax = d(mod b) has a solution

Hence there is an integer y such that d — ax = by

This gives us ax + by = d as required.

Note: Geometrically the pairs (x, y)satisfying ax + by = d we are lattice
points lying on a straight line the x coordinate of each of there points is a
solution of the congruence ax = d(mod b); (a,b) =d

=>d=ax(modb) = b/d —ax > d —ax

11.6 Reduced residue systems and the Euler-Fermat theorem:

Definition 11.1.5: “Reduced Residue System”

A reduced residue system modulo m we mean any set of ¢p(m) integers
incongruent modulo m each of which is relatively prime to m.

Example:If m = 10

Reduced residue system = (1,3,7,9)
Note: ¢p(m)is a Euler totient function.
Theorem 11.16:

If {a;, ay, ......,apum} is @ reduced residue system modulo m and if

(k,m) = 1then {kay, kay, ......, kagm} is also a reduced residue system
modulo m.

Proof:

Given {al, Ay oo ,a¢(m)}are reduced residue system modulo m.

Assume(k,m) = 1,

In {kay, ka,, ......,kapam} no two of the numbers ka; are congruent
modulo m.

By definition, (a;,m) =1
[we know that (a,b) = 1,(a,c) =1 then (a,bc) = 1]
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Since (k,m) =1, (ka;m)=1
~kay ka,, ... ... , kagmyare reduced residue system modulo m.
Theorem 11.17: “Euler- Fermat Theorem”

Assume that (a,m) = 1 then we have a®™ = 1(mod m)

Proof:

If {bl, b, ... ... , b¢(m)}is reduced residue system modulo m (by definition)
ie) (b;,m) =1

since (a,m) = 1, then {aby, ab,, ... ..., abymy} is also reduced residue
modulo m.

(By theorem 11.16)

The product of set of integers in the first set is congruent to product of those
in the second set.

ie){by, by, ... ...,bgimy} = {aby,a by, ... ...,abgm} (mod m)
by, by, ... ... ,bymy = a®™(by, b, ... .. , bg(my ) (mod m)
1 = a®™ (mod m)
a®™ = 1(mod m) (By cancellation law)
Hence the proof.
Theorem 11.18:
If a prime p does not divide a then aP~! = 1(mod p)
Proof:

Given p does not divide a and we know that (a, p) =1 By
usingEuler’sfermat’s theorem,

a?® = 1(mod p) ... (5)

@(p) = p — 1 whenever p is prime

aP™! = 1(mod p)

Hence proved.

Theorem 11.19:

For any integer a and any prime p, we have a? = a(mod p)
Proof:

Case 1: If pla= a= 0(mod p)....... (6)
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= aP = 0(mod p)
= 0= aP(mod p)......... (7)
From (6) and (7) we have
a= aP(mod p) (by transitive)
a? =a(modp) (bysymmetric)
Case 2: If pta then aP~! = 1(mod p)............ (8)
al /a= 1(mod p) ..cvvveeenne 9
a? = a(modp).
Hence proved.
Theorem 11.20:

If (a, m) =1 the solution (unique mod m) of the linear congruence ax=
b(modm) is given by x= ba®?™~1(modm).

Proof:

Given x= ba®™~1(mod m) is the solution of the linearcongruence
ax= b(mod m) .

a (ba®™~1)= b(mod m)
aba®™ a1 = b(mod m)
ba®™ = b(mod m)
a®™ = 1(mod m).

By using Euler’s Fermat theorem, The solution is unique modulo m.

11.7 Exercises:

(Dprove that 5n3 + 7n® = 0(mod 12) for all integers n.
(2) Find all positive integers n for which n'® = n(mod 1365).
(3) Find all positive integers n for which n'” = n(mod 4080).

(4) Prove that @(n) = 2(mod 4)when n = 4 and when n
= p? pisaprime,

p = 3(mod 4).
(5) Find all n for which @(n) = 2(mod 4).
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BLOCK IV: POLINOMIAL
CONGRUENCES AND QUADRATIC
RESIDUES

UNIT-XII: APPLICATIONS OF
CONGRUENCES

Structure

12.1 Introduction

12.2 Objectives

12.3 Polynomial congruences modulo p Lagrange’s theorem
12.4 Application of Lagrange’s theorem

12.5 Simultaneous linear congruences.

12.6 The Chinese remainder theorem

12.7 Application of the Chinese remainder theorem.

12.8 Exercise

12.1 Introduction:

In this unit, we will discuss more than one linear congruences. Under
certain conditions, we will show that such simultaneous congruences have a
solution. We will also discuss the uniqueness of such a solution. For solving
such congruences, thereis a well-known method known as the Chinese
Remainder Theorem.

12.2 Objectives:

The students will be able to

e Solve linear congruences
e Describe the Lagranges theorem
e Determine the Chinese remainder theorem

12.3: POLYNOMIAL CONGRUENCES MODULO P:

The fundamental theorem of algebra states that every polynomial f of degree
n>1 the equation f(x)=0 has r solutions among the complex numbers. There
is no direct analog of this theorem for polynomial congruences. For
example,we have seen that the some linear congruences have no solutions
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some have exactly one solution and some have more than one. Thus, even in
this special case there appears to be no simple relation between the number
of solution and the degree of the polynomial. However, for congruences
modulo a prime we have following theorem of Lagrange.

Theorem 12.1(Lagrange)

Given a prime p, f(X)=cy + ¢;x + -+ c,x"be a polynomial of degree n with
integer coefficient such that c,is not congruent to O(mod p). Then the
polynomial congruence f(x)=0 (modp)............... (1) has at most r
solutions.

Proof:

Let us given f(x)=0(mod p). Then we have to prove by induction on n,
when n=1, The congruence is linear. ¢;x+c,= (mod p) since ¢4 IS not
congruent to 0(mod p) we have (c, p) =1 and there is exactly one solution.

Assume that the theorem is true for polynomial of degree n-1.

Assume also that the congruence (1) has n+1 incongruence solution mod p
(say) xg,Xq1.eeenennnn. Xn . Where f (x;)=0(mod p) for every i=0,1, 2,.....n.
we shall obtain a contradiction we have algebraic identity.

f(X)=co+ x4+ cpx™ oo (2)
f(xg)=co+cix+ - cpx™ i, 3)
f(x)-f(x0) = 1 (x — x0) + 2 (x% —x0%) + - (X™ = xg™)iivneiin 4)

=Yr=1C(x" —xo")
=Y (x = xp)(x" T 4 xg™Th)

= (X=X)Xr=q Cr (X" + e xp" )
fX)-F (x)= (X-x0) 9(x), where g(x) is a polynomial of deg n-1 with integer
coefficient and with leading coefficient c,,.

Thus, we have
f (xx)-f (x0)= (x1-x0) 9 (x1) =0(mod p)
since,f (x)-f (xo)=0(mod p) But is(xy-x,) # 0 (mod p) if k#0

So must have g (x;)=0(mod p) for every k0 By this n incongruent
solution of modulo p.Which is contradiction to our hypothesis.

12.4 Applications of Lagrange’s theorem

Theorem 12.2

If f(X)=cotcix +...... +c,x™ is the polynomial of degree n with integer
coefficient and if the congruence f(x)= 0(modp) has more than n solution
when p is a prime . Then every coefficient of f is divisibly by p.

98



Proof:
If some coefficient of f is not divisible by p. then k< n and the congruence
f(X)= 0(mod p) . we take

f(X)=co+cy X +......4Cp X5 + T+ He, X

Therefore cotcy x +...... +c, x¥ = 0(mod p) has more than k solution. By
Lagrange’s theoremP divides ¢y,

Which is a contradiction to our assumption.

Therefore, every coefficient of f is divisible by p.

Theorem 12.3

For any prime p all the coefficient of the polynomial f(x)=(x-1) (x-2)
........ (x-(pt1)) is divisible by p.

Proof:
Given f(x)=(x-1) (X-2) ........ (x-(p+1))-xP"1 + 1
f(x)=9(x)-h(x)
g(¥)=(X-1) (X-2).rrernne. (x-(p+1))
h(x)=x?~1-1
The roots of g are 1, 2,...p-1.
Hence satisfy the congruence equation
g(x)= 0(mod p)

Let h(x) =xP~%-1  suppose (a, m) =1, a®™ = 1(mod m) (By
Euler’sformatstheorem)

Assume (x, p) =1, we have x?® = 1(mod p).
By Euler’s Fermat’s theorem,
@(p) = (p — 1) whenever p is a prime
xP~1 = 1(mod p)
xP~1 — 1 = 0(mod p)
h(x)= 0(mod p)
f(x)=9(x)-h(x)= 0(mod p)
= f(x)= 0(mod p).
If f(x) has degree (p-2) then also f(x)= 0(mod p)
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=~ All the coefficient f(x) is divisible by p.
Theorem 12.4: (Wilson’s Theorem)
For any prime p we have (p-1)! = —1(mod p) and prove its converse.
Proof:
Consider the polynomial are
(%-1) (X-2) ... (X-(p-1))-(xP~1+1)
The constants terms of the polynomial are
-1, -2, -3eceen(-(p-1)) +1= (-1) (1), (-1) (2), voornen. (-1) (p-1) +1
=(—1)P 1(p-1)! +1

Since all the coefficient must be divisible by p

P (=1P(p-D)! +1

P | (p-1)! +1 [ since, where p is prime (p-1) is even]

(p-1)! +1= 0(mod p )

(p-1)!= —1(mod p)
Conversely, Forn> 1
(n-1)! = —1(mod n)
(n-1)! +1= 0(mod n)
n|(n-1)!+1
To prove n is prime
Suppose n is composite

n=cd
din e (10)

since n is the divisor such that 1<d<n

From (10) and (11)
n|(n-1)!
nt(m—1D+1
Which is a contradiction

S Nnis prime.
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Theorem 12.5 (Wolstenholme’s)
For any prime p=> 5 we have 22;1(19 - D!/k
Proof:

The sumZi;}(p — 1)!/k is the sum of the product of the number 1,2,
....... (p-1) taken (p-2) at a time. This sum is also equal to the coefficient of x
in the polynomial.

g(xX)=(x-1) (X-2) eeerrrerrrnne (X-(p+1)).
g(x) can be written in the form of
gO)=xP 1 = 53xP 72 45, xP 73 4 e isy s X2 =5, 0+ (p— 1)

where the coefficient of s, is the k" elementary symmetric function of the
roots that is the sum of the product of the numbers 1,2.... (p-1) taken k at a
time. (By theorem 12.7) each of the number sy, s,, 55 . s, is divisible by

p

.........

we have to show that s,,_,is divisible by p?.
The product of g(x) shows that g(p)=(p-1)!
(p-1)! =p?P~1—s,pP72 — ... — Szpp—3sp_2pp+(p—1)!
Cancelling (p-1)! And reducing the equation modulop3 , we get
Since p>5, ps,_, = 0(mod p?)

And hence s,,_, = 0(mod p?)as required.

12.5 SIMULTANEOUS LINEAR CONGRUENCES.

Theorem 12.6:(The Chinese remainder theorem)

Assume my, m, ....m, are positive integers relatively prime pairs (m; ,

my)=1, iZk. Let by, b,, ... b,, are arbitrary integers. Then the system of
congruences,

X= b; (mod my)

X= b,(mod m,)

X= b,.(mod m,).
Has exactly only one solution modulus my, m, ....m,.
Proof:

Let M=my,m, ....m, andmy, = M/m,
101

Applications Of Congruences

Notes



Applications Of Congruences

Notes

By Euclid’s extended algorithm
Let M';, be a reciprocal of m,
MM, = 1(mod My ).eevevveeienee (12)
Let x=b M, M, (mod m;, ) (k=1,2,....r)
X=by(1)(mod my )
Hence x satisfies every system of congruences modulo m;,

UNIQUENESS:

Let x and y be the two solutions of system congruences
X= by, (modmy)............. (13)
y= b; (modmy, )
b, = y(modmy).....c.c....... (14) (by symmetric)
From (13) and (14)
Xx= y(mod my,) (by transitive)
since m;, are relatively prime in pairs.
X= y(mod mym, m,)
X= y(mod my,)

since congruence is an equivalence relation

X=y.

Theorem 12.7:

Assume m; m, _m, are relatively prime in pairs. Let by by, ... ... b, be
arbitrary integers and let a, a, _a, satisfy (a, m;)=1 for k=1,2,...r. then the
linear system of congruence

a;X= b, (mod m,)
a,X= b,(mod m,)

a, X= b,(mod m,.). Has exactly solution modulo m; m, _m,.

Proof:

Let a,denote the reciprocal of a,modulo m,,. This exists since (a; my)=1.
Then the congruencea;X= b, (modm,; ) is equivalent to the congruence
X= bya' (mod my).Now apply theorem 12.10.
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12.6: APPLICATIONS OF THE CHINESE REMAINDER
THEOREM:

Theorem 12.12:

Let f be a polynomial with integer coefficients, let m; m,
integers relatively prime in pairs and let m=m; m,
congruence

...... m,. be positive
m,.. Then the

f(x)= 0(mod m).......c.ccocuo... (15)
has a solution if and only if each of the congruences

f(x)= 0(mod m;) (i=1,2.....1) ... (16) has a solution.
Moreover, if v(m) and v (m;) denote the number of solutions of (1) and (2),
respectively, then

v(m)=v (my), v(m,),v(im,) ..o @17
Proof:

If f(a)= 0 (mod m) then f(a)= 0 (mod m;) for each i. Hence every
solution of (15) is also a solution of (16).

Conversely, let a; be a solution of (16). Then by Chinese remainder
theorem there exists an integer a such that

a=a; (modm;) fori=1.2,..r. ... (18)

SO

f(a) = f(a;) =0 (mod m,) .

Since the moduli are relatively prime in pairs, we also have f(a)=
0 (mod m). Therefore, if each of the congruences in (16) has a solution, so
does (15).

We also know, by theorem 12.10, that each r-tuple of solutions

(aq, a,, ..., a,) of the congruences in (16) gives rise to a unique integer a
mod m satisfying (18). As each a; runs through the v(m;) solutions of (16)
the number of integers a which satisfy (18) and hence (16) is
v(m,),v(m,),...,v(m,.). This proves (17).

Theorem 12.13:

The set of lattice points in the plane visible from the origin contains
arbitrarily large square gaps. That is, given any integer k>0 there exists a
lattice point (a, b) such that none of the lattice points (a+r, b+s), 0 <r <
k,0 < s < k, is visible from the origin.

Proof:

Let p1, py, ..., be the sequence of primes. Given k>0 consider the k X k
matrix whose entries in the first row consists of the first k primes, those in
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the second row consists of the next k primes, and so on. Let m; be the
product of the primes in the i*" row and let M; be the product of the primes
in the i*" column. Then the numbers m; are relatively prime in pairs as are
the M;.

Next consider the set of congruences
X= —1(mod m,)

= —2(mod m,)

X= —k(mod my).

This system has a solution a which is unique mod m,; m,
the system

my. Similarly,

y = —1(mod M,)
= —2(mod M,)

y= —k(mod M,).

has a solution b which is unique mod M;, M,, ..., M, = m; m,

Now consider the square with opposite vertices at (a,b) and (a+k,b+k). Any
lattice point inside this square has the form

(a+r, b+s), where 0<r<k, 0<s<k,

And those r=k or s=k lie on the boundary of the square. We now show that
no such point is visible from the origin. In fact,

a = —r (mod m,), andb = —s (mod M)

s0, the prime in the intersection of row r and column s divides both a+rand
b+s. Hence a+r and b+s are not relatively prime, and therefore the lattice
point (a+r, b+s) is not visible from the origin.

12.7 EXERCISES:

1.Prove the converse of Wilson’s theorem: If (n-1)! +1= 0(mod n), then n is
prime if n>1.

2. Find all positive integers n for which (n-1)! +1 is a power of n.
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3. If pis an odd prime, let g=(p-1)/2. Prove that (q!)? + (—1)9 =0(mod p).
This gives g! As an explicit solution to the congruence x2 + 1 = 0(mod p)
when p= 1(mod 4), and it shows that g! =+1(mod p) if p= 3(mod 4). No
simple general rule is known for determining the sign.

4.1f pis odd p>1,prove that 123252 ...(p — 2)% = (—1)(p_1)/2(mod p) and
24272 2 — (p+1)/
2°4%6% ...(p —1* = (-1 2(mod p)
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UNIT-XI11 DECOMPOSITION
PROPERTY

Structure

13.1 Introduction

13.2 Objectives

13.3 Polynomial congruences with prime power moduli
13.4 The principle of cross classification

13.5 A decomposition property of reduced residue systems

13.6 Exercise

13.1 Introduction:

Generally, Solving linear congruences is fundamental in many parts of
number theory. The generalization, solving polynomial congruences, is
perhaps not as basic but is still an important topic. For the polynomials
students have worked with in the past, namely polynomials with rational,
real, or complex coefficients, the number of solutions in complex numbers is
at most the degree of the polynomial. How to solve polynomial congruences
mod primes and mod prime powers, the Chinese Remainder Theorem allows
solving polynomial congruences for composite moduli.

13.2 Objectives:

The students will be able to

e Analyse polynomial congruence
e Describe the principle of cross classification
e Determine the decomposition property of reduced residue system

13.3 POLYNOMIAL CONGRUENCES WITH PRIME
POWER MODULL:

Theorem 12.12 shows that the problem of solving a polynomial congruence
f(x)= 0(mod m) can be reduced to that of solving a system of congruences

f(x)= 0(mod p;*) (i=1,2,.....r)
where m=p,%1......... p-%r. In this section we show that the problem can be

further reduced to congruences with prime moduli plus a set of linear
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congruences. Let f be a polynomial with integer coefficients and suppose
that for some prime p and @ > 2 the congruence

fX)= 0(mod p%).vvvveevee @

has a solution, say x=a, where a is chosen so that it lies in the interval
0< a < p“.

This solution is also satisfying each of the congruences

f(x)= 0(mod p?) for each B < a in particular, a
satisfies the congruence

f(X)= 0(mod p* ™ Vcveveeeeeeee. (2).

Now divide aby r*~1 and write a=gp®* 141 .ccccevevneee., (3) where
o< r < p%L

The remainder r determined by (3) is said to be generated by a. Since

r = a(mod p®*~1) the number r is also solution of (2). In other words, every
solution a of congruence (1) in the interval0< a < p“ generates a solution r
of congruence (2) in the interval

0<a<p* L

Now suppose we start with a solution r of (2) in the interval 0< r < p%~1
and ask whether there is a solution a of (1) in the interval 0< a < p* which
generates r. If so, we say that r can be lifted from p*~1to p*. The next
theorem shows that the possibility of r being lifted depends on f(r) mod p*
and on the derivative f '(r) mod p.

Theorem 13.1:

Assume a = 2 and let r be a solution of the congruence f(x)=
o(mod)p® ... (4) lying in the interval 0< r < p%71.

a)Assume f(r) # (mod p). Then r can be lifted in a unique way from
p® 1to p®. Thatis, there is a unique a in the interval 0< a < p% which
generates r and which satisfies the congruence

f(X)= o(mod)p® ... (5)
b)Assume f '(r) = 0(mod p). Then we have two possibilities:
bl) If f(x)= 0(mod p?%) , r can be lifted from p%~'to p%in p distinct ways.
b2) If f(r)# 0(mod p%), r cannot be lifted fromp®*~1to p«.
Proof:

If n is the degree of f, we have the identity (Taylor’s formula)

fcth) =f+ £ (0 +-2 p2+. . +@ h"......(6)
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for every x and h. We note that each polynomial f*(x)/k! has integer
coefficients. Now we take x=r in (6), where r is a solution of (4) in the
interval 0< r < p*~1, and let h=gqp%~1 where q is an integer to be specified
presently. Since a > 2 the terms in (6) involving h? and higher powers of h
are integer multiplies of p*. Therefore (6) gives the congruence

f(r+qp®~)= f()+f'(r)gp®~* (modp®)

since r satisfies (4) we can write f(r)= kp%*~? for some integer k and the last
congruence becomes

f(r+ap® )= {qf ' (N+K}p* ! (mod p*)
Now let
a=r+gp* L. (7).

Thensatisfies the congruence (23) if and only if g satisfies the linear
congruence

qf’ (r)+k= 0(mod p)............. (8)

If f'(r) # 0(mod p) this congruence has a unique solution g mod p and if
we choose q in the interval 0< g < p then the numbers a is given by(7) will
satisfy (5) and will lie in the interval 0< a < p¢.

On the other hand, if f'(r) = 0(mod p) then (8) has a solution
g, if and only if,p|k that it is iff f(r)= 0(modp%). If ptk there is no choice of
g to make a satisfy (5). But p|k then the p values q=0,1,......... ,p-1 give p
solution a of (5) which generate r and lie in the interval 0< a < p%. This
completes the proof.

13.4 THE PRINICIPLE OF CROSS-CLASSIFICATION:

Some problems in number theory can be dealt with by applying a general
combinatorial theorem about sets called the principle of cross-classification.
This is a formula which counts the number of elements of a finite set which
do not belong to certain prescribed subsets s, s,, ... ... s;,.

NOTATION: If Tisasubsetof S, we write N(T) for number of elements
of T. We denote S-T the set of those elements of S which are notin T.
Thus

S—Uigsi

Consists of those elements of S which are not in any subsets of
51,82, - - . Sy FOI brevity we write s;s; , s;s;sy . _for the intersections
siNs;,s; Ns; N sy respectively.
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Theorem 13.2:

If 51,55, ... .... 5, are given subsets of a finite sets, the N(S— UL 5;)=N(s)-
Yis<izn N(Si)+21sisjsn N(s;s))-
Yis<icjck<n N(SiSjSi)*enne. (—1)"™N(S1, 52, cev e - Sp)-

Proof:

If TSS, Let N,(T) denotes the number of elements in T which is not in
any of subsets sy, s, ... .... s, With Ny (T) being simply N(T). The elements
are enumerated by N,._,(T) falls into two disjoint sets. These which are not
in S which are in S,.. Then we have, N,_;(T) = N,(T) + N,_,(TS,).

Hence, N,-(T) = N,_1(T) + Nyp_1(TS;)........ 9)
We take T-S
Ny (S) = Ny (S) 4 Ny_ g (SSp) v, (10)
In equation (28) to express on each term on right interms of N,._,(s)
Ny—1(8) = Ny—2(S) + Ny (SS;)
Ny_1(8;) = Ny_5(Sy) + Ny_»(SS;)
Ny (8) = Ny—2(S) + Ny—2(Sr-1)
= Ny—2(S) = Np2(8Sr-1) — Np—2(Sp) + Ny 5(8S,-1)
Proceeding like this we obtain,

N( S— Uj=1 5:)=No(s)- X1<i<r No (Si)"'leistr No(s;s))-
Yis<izjek<r No(SiSjSk)+.oon.. (1) " No(S1, Sy er wve e Sp)eervervennn. (12)

Applying r = n and Ny=N in (11) This gives the required formula.
EXAMPLE:

The product formula for Euler’s totient can be derived from the cross-
classification principle. Let p,,p, .. ..p, denote the distinct prime divisors
of n. Lets={1,2,3,.....n} and s; be the subset of S consisting of those
integers divisible by p,. The numbers in S relatively prime to n are those in
none of the sets S, , S,

.........

_n S )=—" =—
NSy, s NOSES) T N(S1,Ss....Sr)=5——— so the
cross classification principle gives us
n n n r n
e —_ . —t I T +(—
(p(n) n Zl:lpi Zl—l—l—rpipj ( 1) p1, P2....DPr
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d 1
=NZap 52 = (1 =),

The next application of the cross-classification principle counts the
number of elements in a reduced residue system mod k which belong to a
given residue class r mod d, where d|k and (r, d) =1.

Theorem 13.3:

Given integers r, d and k such that dk, d>0, k> 1 and (r, d) =1. Then the
number of elements in the set

S={r+td:t=1,2,......k/d}

Which are relatively prime to k is ZE—S;.

Proof:

If a prime p divides k and r+td then p4d, otherwisep|r, contradicting the
hypothesis (r, d) =1. Therefore, the primes which divide k and elements of
S are those which divide k but do not divide d. Call them p; ,p, _...pm and
let

.........

k'=p;,ps .. .Pm

Then the elements of S are relatively prime to k are those not divisible by
any of these primes. Let

Si={x:x€ S and p;|x} (i=1,2,3.......m).

If x€ S; and x=r+td then r+td= 0(mod p;) . since p; + d there is a unique
mod p;with this property, therefore exactly one t in each of the intervals
[1,pil.[p; + 1, 2pil,- ... [(9-1)p;+1,9p;] where gp;=k/d. Therefore

k/d
N(si):pLi.

Similarly,

k

N(sisj):%pj, .................. N(S1,S;  Sm)=

Hence by the cross-classification principle the number of integers in S
which are relatively prime to k is

kl'[p|k(1—l) oK)

kg O kg L -
= Z X —5- = 2l (1 ) pe-D) 0@’

13.5 A DECOMPOSITION PROPERTY OF REDUCED
RESIDUE SYSTEMS:

As an application of foregoing theorems, we discuss a property of reduced
residue system which will be used in a later chapter we begin with a
numerical example.

110



Let S be a reduced residue system mod 15, say
S={1,2,4,7,8,11}.

We display the 6 elements of S in a 3x 2 matrix as follows:

1 2
4 8
7 11

Note that each row contains a reduced residue system mod 3
and the numbers in each column are congruent to each other mod 3. This
example illustrates a general property of reduced residue described in
following theorem.

Theorem 13.4:

Let S be a reduced residue system mod k and let d>0 be a divisor of k. Then
we have the following decomposition of S:

a) Sis the union of % disjoint sets, each of which is reduced residue
system mod d.

I

b) Sis the union of ¢(d) disjoint sets, each of which consists o (@

numbers congruent to each other mod d.

Note: In the foregoing examples, k=15 and d=3. the row matrix
represents the disjoint set of part(a), and the column represents the
disjoint set of part(b). If we apply them to the divisor d=5 we obtain the
decomposition given by a matrix

1 2 4
11 7 14

Each row is reduced residue system mod 5 and each column consists of
numbers congruent to each other mod 5.

Proof:

First, we prove that the properties (a) and (b) are equivalent. If (b) holds we
can display the @ (k) element of s as a matrix using the ¢(d)disjoint sets of
(b) as columns. The matrix has

% rows. Each row contains a reduced system mod d, and these are the
disjoint sets required for part (a). Similarly, it is easy to verify that (a)

implies (b). Now we prove (b). Let S; be a given reduced residue system
mod d and suppose re S;. We will prove that there are at least %integers
nin S distinct mod k, such that n= r(mod d). Since there are ¢(d) values
ofrinS; and @(k)integers in S, there can’t be more than % such
numbers in n, so this will prove part(b).

The required numbers n will be selected from the residue classes mod k
represented by the following k/d integers:
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r, r+d, r+2d,....... , r+=d.

These numbers are congruent to each other mod d and they are incongruent
mod k. Since (r, d) =1, theorem 12.16 shows that % of them are relatively

prime to k, so this completes the proof.

13.6 EXERCISES:

1. Letn be a positive integer which is not a square. Prove that for every
integer a is relatively prime to n there exists integers x and y satisfying

ax=y (mod n) with 0<x<+/n and 0<|y|<vn

2. Let p be a prime p= 1(mod 4) let g=(p-1)/2 and let a=q! Then prove that
there exist positive integer x and y satisfying 0<x<ﬁ and 0<y<\/5 such
that a®x? — y? = 0(mod p).

3.For the x and y in (2) prove that p=x2+y2. This shows that every prime
p= 1(mod 4) is the sum of two squares.

4. prove that no prime p= 3(mod 4) is the sum of two squares.
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UNIT-XIV: QUADRATIC RESIDUES
AND QUADRATIC RESIPROCITY LAW

Structure

14.1 Introduction

14.2 Objectives

14.3 Legendre’s Symbol and its properties
14.4 Evaluation of(—1/p) and (2/p)
14.5 Gauss’s Lemma

14.6 The quadratic reciprocity law

14.7 Applications of the reciprocity law
14.8 The Jacobi symbol

14.9 Applications to Diophantine Equations.
14.10 Exercise

14.1 Introduction:

Here we will introduce quadratic residues modulo an integer n.The quadratic
residues of n are the integers which are squares modulo n. We will
particularly study quadratic residues modulo an odd prime p. We will
discuss Euler’s criterion, which specifies when an integer is a quadratic
residue modulo p. Whether an integer is a quadratic residue modulo p is
indicated by a symbol called Legendre’s symbol. We will also discuss
properties of Legendre symbol.

14.2 Objectives

: The students will be able to

e |dentify the Legendres symbol
e Determine the application of reciprocity Law
e Describe the applications of Diophantine equations

Definition14.1.1: Quadratic Residues:

Let p be an odd prime and n # 0 (mod p) consider the quadratic
congruence x>= n (mod p). The value of n for which the congruence has a
solution is called residues mod p(nRp) and those n for which the congruence
has no solution is called quadratic non-residues mod p (nRp).

Example:
1. To find the quadratic residues modulo 11.

Case 1:
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Quadratic Residues And
Quadratic Resiprocity Law Herep=3,n=12
x*= 1 (mod 3)
1%= 1 (mod 3) has a solution 1R3
x?= 2 (mod 3) has no solution 2R3
Case 2:
Herep=7,n=1,2,3,4,5,6.
x?= 1 (mod 7) has a solution 1R7
x?= 2 (mod 7) has a solution 2R7
x?= 3 (mod 7) has no solution 3R7
x?= 4 (mod 7) has a solution 4R7
x?= 5 (mod 7) has no solution 5R7
x?= 6 (mod 7) has no solution 6R7.

Notes

P 3 5 7 11 13

nRp 1 1,4 1,2,4 1,34, |134910,12
59

nRp 2 2,3 3,56 2,6,7, [2,56,7,811
8, 10

Theorem: 14.1

Let p be an odd prime. Then every reduced residue system mod p contains
exactly (pT_l) quadratic residues and exactly (p7—1) quadratic non-residue

_1\2
classes containing the numbers 17, 22,...,(%) .
Proof:
The reduced residue system mod p is {1, 2(”7_1) p-1}

_1N\2
The numbers 1, 22,...,(%) are distinct (incongruent) mod p.

To prove that if 1<x,y < pT_l then x%% y? (mod p) for some x #y
Suppose x°= y? (mod p)
= x? -y*= 0 (mod p)
= p X2 -y* = p | (x+y) (x-y)
= p| (x+y) or p| (x-y)
-1

. -1
Since 1 <x <X— and 1 <y <
2 2

. 2<xty<p-1<p =>x+ty<p

= pl (x+y)
Sincep | (X-y)and 0 < [x-y|<p-1<p
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= X=y (mod p)
= X=Yy
Which is contradiction to x #y

~ x*% y* (mod p)
N2
Thus, the numbers 12, 22,...,(%) are congruent to mod p.

Hence the claim.
If k is a quadratic residue then

(p-k)? = p® + k*+ -2pk = k% (mod p)

=~ There are exactly (pT_l) quadratic residues and exactly (pT_l) quadratic
non-residues mod p.

Hence the theorem.

14.3 Legendre’s symbol and its property

Definition 14.1.2: Legendre’s symbol

Let p be an odd prime. If n # 0 (mod p) we define the Legendre’s symbol (n
| p) as follows

_(1if nRp
(nlp)= {—1 if nRp

Ifn=0 (mod p) then(n|p)=0

Example:
Here (1| p) = 1 if xX°= 1 (mod p) (i.e.) 1Rp
(m?| p) = 1 if x*=m? (mod p) (i.e.) mRp
(2|5) = -1 if x*= 2 (mod 5) (i.e.) 2R5
(2]11) = -1 if x*= 2 (mod 11) (i.e.) 2R11
(66 | 11) = 0 if xX*=66 (mod 11)
Note:
Legendre’s symbol is periodic function

(m|p) =(n|p) whenever m = n (mod p) (i.e.) the Legendre’s symbol is
periodic with period p

Case 1: suppose (m | p) =1
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Quadratic Resiprocity Law Consider quadratic congruence

x*= m (mod p) has a solution
Notes since xX*= m (mod p) and m = n (mod p)
~x’= n (mod p) (by transitive)

(n | p) =1 has solution
Thus (m [ p) = (n|p)
Case2: (m|p)=-1
Consider quadratic congruence

x?= m (mod p) has no solution
since x°= m (mod p) and m = n (mod p)
~x*= n (mod p) (by transitive) has no solution
~ (n|p)=nRp=-1
Thus (m [ p) = (n|p)
Thus, the Legendre’s symbol is periodic with period p

Theorem: 14.2 Euler’s Criterion

p—1

Let p be an odd prime then for all n we have (n|p) = na (mod p)
Proof:

Casel: If(n|p)=0 = n=0(modp)
p-1

=>n 2 =0(modp)
p—1

=>n 2 =0 (modp)

By symmetry (n|p) = in_l (mod p)

Case 2: If (njp) =1 and n # 0 (mod p)
The congruence  X°= n (mod p) has solution (say “x1”)
X:?= n (mod p)

n= x;% (mod p)

p=1 p=1
nz =(xf)2 (modp)

p—1
n 2

(x1)P~1 (mod p) ( By Little Fermat theorem a’= a (mod p) )
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n'7 = (n|p) (modp) (since (n | p) = 1)
By symmetry,

p-1
(n|lp) =nz (modp)
Case 3: If (n|p) =-1 & n# 0 (mod p)

Consider the polynomial f(x) = xpz;1 -1 the deg (f(x)) = %

By Lagrange’s theorem, the congruence f(x) = 0 (mod p) has at most %

solutions.

P-1 . . f P-1 .
It has -~ quadratic residues mod p are solutions and -~ quadratic non
residues mod p is not solution.

~n'7 %1 (mod p) if (nfp) = -1
By Euler format theorem,
n"!= 1 (mod p)
n"!—1 = 0 (mod p)

p—1 p-1
(nz-1)(n=2+1)= 0 (mod p)
Since (in_l-l) # 0 (mod p)

(in_l+1) = 0 (mod p)

By symmetry, (n|p) = npz;1 (mod p)
Theorem: 14.3

Legendre symbol is completely multiplicative (i.e.) for all m, n, (mn|p) =
(mlp)(nlp)

Proof:

Case 1: If m =0 (mod p), n = 0 (mod p) then mn= 0 (mod p)
(ie.) (mlp) =0, (np) =0 & (mnp) = 0

= (mnfp) = (m|p) (n|p)

Case 2: If m # 0 (mod p), n # 0 (mod p) then mn # 0 (mod p)
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Quadratic Resiprocity Law By Euler criterion theorem,

(mnlp) = (mn)'z (mod p)

Notes p-1 p-1

=mz2nz (modp)

(m|p)(n|p) (mod p)

gnlp)-(mlp)(nlp) =0 (mod p)

Since the value of (m|p), (n|p) and (mn|p) are either 1 or -1

v

The value of (mn |p)-(m|p)(n|p) are either O (or) 2 (or) -2
If (mn[p)-(m|p)(n|p) =2 (or)-2

Then 2 (or) -2 =0 (mod p) (from eqn *)

This is not true

~(mn[p)-(m|p)(n|p) =0

=(mn|p) = (m|p) (n|p)

Note:

The Legendre symbol is also called the quadratic character (mod p) and it
is denoted by y(n) (i.e.) x(n) = (n|p)

14.4 Evaluation of (-1|p) and (2|p)

Theorem: 14.4  Evaluation of (-1|p) and (2|p)
For every odd prime p, we have

1if

(up=v7 =7

Proof:

By Euler criterion,
(nlp) = n'F (mod p)
(~11p) = (1)’ (mod p)
(-1p)— (=1)'T =0 (mod p)
The value of (—1|p)&(—1)% are 1 (or) -1
The value of (—1|p) — (—1)% are 2 (or) -2 (or) 0
If (~1Ip) — (-1)'Z = 2 (or) — 2
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2 (or) — 2 =0 (mod p)
This is not true.

p

A (-1p) = (-D7 =0

B pt (1if p= 1(mod4)
(-1p) = (1) = _{_1 if p = 3(mod4)

Theorem: 14.5

For every odd prime p, we have

-1 if p= + (mod8)
@lp) = (— 1) { 1if p =+ 3(mod?8)

Proof:
p-1= —1 (mod p) = (—1).1 (mod p)
2 =2 (modp) = (—1)2.2 (mod p)
p-3 = —3 (mod p) = (—1)3.3(mod p)
4 = 4 (mod p) = (—1)*.4(mod p)

p-1 p_4q

r=22 (modp) =(-1)z .—— (mod p)

where r is either 2=2 or p - u = %multiplying vertically we get

246..(p-3) (p-1) = (~1)"T T [1.23 . —] (mod p)

p—1 (p 1)(p+1)
22[123 5 —] = ( ( ) (mod p)
p—1 (p 1)(p+1)
22[123 5 —] = ( ( ) (mod p)
ot P -1
.= 0T (P50 modp)
Cancel ( > ) I'on both sides we get
p-1 p?-1
22 = (-1) s (modp) » (1)

By Euler Criterion theorem,
-1

(nlp)= n'z (modp)

@) = 27 (modp) @)

v
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From equation (1) & (2) we get
2

@) = (-1)"% (mod p)

p2-1

@p) - (=1) =

= 0(mod p)

p3-1
The values of (2|p) and (—1) s are either -1 (or) 1 and they
simultaneously take same values,

Otherwise p|2
p-1
F@p)=(-1) s
p’-1 .. p>-1.
Case 1: Now (—1) s =1Iif —5 Isaneven say 2k
= p%-1=16k

= (p-1) (p+1) = 16k

Since p is an odd prime = either (p-1) or (p+1) is a multiple of 4 and the
other is even.

(i.e.) (p-1) (p+1) = 0 (mod 8)
(ie) p =11 (mod8)

p?-1

Case2:(—1) & = —11if % is an odd say 2k+1
= p’>-1=16k+8

= p%-9=16k

= (p+3) (p- 3) =16k

Since p is an odd prime = either (p-3) or (p+3) is a multiple of 4 and the
other is even

(i.e.) (p+3) (p- 3) = 0 (mod 8)
(ie)p = £ 3 (mod 8)

_ P2—1_ 1if p=41(mod8)
@p)=(-1)"s _{_1 if p =+ 3 (mod8)

14.5 Gauss Lemma

Theorem:14.6 (Gauss Lemma)

Assume n # 0 (mod p) and consider the least positive residues mod p of the
following (pT_l) multiplies of n: n, 2n, 3n,..., (pT_l)n. If m denotes the
number of these residues which exceeds p|2, then (n|p) = (—1)™
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Proof:
Claim 1: The numbers n, 2n, 3n, ..., (pT_l)n are incongruence to mod p
Suppose in = jn (mod p), for i+ j, 1<1,j < pT_l
= in — jn = 0 (mod p)
= (i—j)n =0 (mod p)
= (i—j)=0(modp) (.- n=z0(modp))
S Q= (- 0<lij < )
Which is a contradiction to i+ j

_1 .
~. The numbers n, 2n, 3n, ..., (pT)n are incongruence to mod p

Let A ={a; ay as,._ax, where each &= tn (mod p) for 1< t < pT_l& 0<

ai<2
2

& B = {b1, by bs__bn}, where each b= sn (mod p) for 1< s < Z&2<
bj<p

~m+k = pT_l (since A and B are disjoint)
Let C = {c1,C2, C3,.. Cm } Where ¢j= p- b
Now, < by<p

= - §> -bj>-p

= p-5>p-bj>pp

= §> c>0

= 0<¢< -g

Clam@2):AnC=9¢

Let cj-a some pairi& ]

=>p—Dbj =g

=a; +bj =p

=>tn+sn=p

= (t+s)n=p

Since p= 0(mod p)
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We get a contradiction (~.(t + s) # 0(mod p))

Notes ~ANC=0

(i.e)) AU C has m+k elements in the interval [1, pT_l]

p—1
“AUC={12,..,—}
But AuC ={a; aa;. aC1,C2Cs5. Cm}
Taking product on both sides,
123..==a1 88, &C1C.C. Cn

(pT_l)' =dp a3_.__,ak.(p- b1).(p- b2)...(p- bm).
EH = apaas ad-1)™ by by... by, (Mod p)
= (—=1)" ar a2 as...a. by ba... by (Mod p)

= (-1)"n,2n,3n, ..., (pT_l)n (mod p)

p-1 rpy_
= (-1)"nz (pTl) I(mod p)
. .. p—1
Since p does not divides (T) !
By cancellation law, we get,
1 = D" R (mod p)
X (-1)"= (-1)"= (-1)*" in_l (mod p)
E
= (-1)"= nz (modp)
By Euler criterion theorem, we get,
p-1
nz =(nlp) (mod p)
By equivalence relation,

= (njp) = (=1)" (mod p)

Since the values of (—1)™ & (n|p) are takes 1 or -1 and they
simultaneously take same value otherwise g

(njp)= (="
Theorem: 14.7

Let m be the number defined in Gauss lemma then
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P-1
m= Z ’ [t—n] +(n-1) E(mod 2)
t=1 P 8
In particular if n is odd, then
P-1
= Z ’ [t—"] (mod 2)
t=1 P

Proof:

Let m be the number of least positive residue of the numbers which exceed g

Consider the multiple of n (say) (t.n) where 1< t < pT_l

Now,

[+ .0<hes

> n=p|Z|+p()

= th=p [%"] +r0<r<p

= rtztn-p[%”] > (1)

By Gauss lemma,

AUB ={a; ay a3, agb: by b3 bm}
={rn... rpz;l}

AU C ={a;aa, a1 CCs Cn}

= {1,2,...,7‘%1 } where ¢j=p —b;

Adding AU B we get

P-1 ; m
2 —_
t=1rt - Zt:lai + 1bj
t=

m

P-1
:"Z “(tn — p [%n]): Yiia;+ b;
t=1

t=1

pP-1 pP-1
2 2 [tn|_ vk m
= nztzlt-p [?]— Zt=1 a; + bj
t=1 t=1

P-1
Sn[l+2+-+ E]-pz ’ [t—”]: Yk a; + Z
2 t=1"P

m

.
=n@He) C [HE sty b @

t=1

m

b
t=1
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Adding AU C , we get

m
Notes 1_|_2_|_...+p7_1: lt(=1ai+z Cj
t=1

2 m

-1
PR = Tat ) (b))

m
= Sat I ) b, O

@+ @)
M) ED=p)  [3] =2 2kia+mp
mp=) D -p) C [F] - 23a s @

we know that
(ntl)=(m—1) (mod2) andp =+ 1 (mod 2)

Taking (mod 2) to equation (4)

m= (1) & + Z; [Z] (mod 2)

In particular, if n is odd, (n-1) is even

P-1

m= z ’ [t—n] (mod 2)
t=1 P
Hence the theorem.

Theorem: 14.8 Quadratic reciprocity law:

(r-1)(q-1)

If p and q are distinct odd primes then (p|q) (qlp) = (=1) =«

Proof:

By Gauss lemma and the previous theorem, we have

P-1

(qlp) = (=™ where m = Z 2

t=1

[4] (mod 2)

a-1
Similarly (plg) = (=1)" where n= Z ’ [%] (mod 2)
s=1

Thus (pla) (lp) = (-1)™"

Claim:m+n = %@-1)
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= a-1
ie) to Z 2 e +Z 2 (spy _ (=D(@-D)
(© t=1[p] S=1[q] 4
Consider f (X7 y) = gX-py

If x and y are non-zero integers then f(x,y) is a non-zero integers

As x takes the values 1, 2,.. .,%& y takes the values 1, 2,.. .,qT_l for a fixed
X we have,

f(xy)>0egpy>0ey< x(onys [x]

=~ The total number of positive values of

f(x,y)= Z“p

for a fixed-point y,
f(x,y)<0 e gx-py<0
S gxX<py
Py
o x< [q ]

=~ The total number of negative values of

Fx,y)= EM

Thus, total number of positive and negative values of

F(x,y)= Z 5] Zy_[”q—y]

But, the total number of positive and negative values of f (X, y) is
(p_—l) (q__l) - (p—l)(q—l)
2

2 4
Thus,
pP-1 q-1
@-D@-1 _\" 2 x 2y
4 szl[p]+zy=1[q]
®-D@-D _ in
(®-1)(q-1)
-1 s = (=)™
=(-D"=D"
= (pla) (alp)

125

Quadratic Residues And Quadratic
Resiprocity Law

Notes



Quadratic Residues And
Quadratic Resiprocity Law

Notes

(r-1)(q-1)

~ (pla) (@p) = (1) =+
Note:

Quadratic reciprocity law can also be written as

(p-1)(q-1)

(ap) =@l (1) =

14.7 Applications of Quadratic Reciprocity Law

Example:1
Determine whether 219 is quadratic residue or not residue (383)
Solution:

219 = (3x 73| 383) = (3|383)(73|383) ("..Legendre symbol is completely
multiplicative)

(3—-1)(383—1)

(3/1383) =(383|3) (—1) 4 (By quadratic reciprocity law)

2)(382)
4

= (3833) (1)
= (3833) (—1)™

= (383[3) (—1)

=-(383|3) (Legendre symbol is periodic with p)
=-(2]3) (- 383 =2 (mod 3))

=- (—1)% (using theorem 14.5 (2|p) = (_1),, 8_1)

=1
Now,

(73-1)(383-1)

(73|383) = (383|73) (—1) 4 (By quadratic reciprocity law)

(72)(382)

= (383B) (1) +
= (3833) (—1)°%7°
= (383[73)

= (18|73) (Legendre symbol is periodic with p)
= (18|73) (- 383 =18 (mod 73))

= (2 x9|73)

=(2173) (9]73)

=2[73) (1)
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5329-1 p2-1

= (-=1)" & (using theorem 14.5 (2p) = (—1) & )

=1
. (219]383) = (3/383) (73383)
=1x1
=1
. 219 is a quadratic residue (mod 383)
Example:2

Determine those odd prime p for which 3 is a quadratic residue or non-
residue.

Solution:

By Quadratic reciprocity law,

(r-1)(g-1)

@) = (pla) (-1
(p-1)(2)

@lp) = (pI3) (-1) =

@) =13 D7 @)
To determine (p|3),

v

-1
We need to know the value of p (mod 3), and to determine (—1)pT, we

need to know the value of

(pT_l) mod 2 or the value of p mod 4,

Hence, we consider p (mod 12)

~p=15,7and 11 (mod 12) (. p is odd)
Case 1: let p = 1(mod 12)

In this case p =1 (mod 3), p = I(mod 4)

So (PR)=(1/3)=1 > 2)
Also, p=1(mod 4)
So (pT_l) is even, (—1)112;1 =1 > 3

Hence p=1(mod 3)
Substitute (2) and (3) in (1)

= (Bp) =1

. 3is quadratic residue mod 1
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p=5(mod3)p=5(mod4)
Notes In this case
p=2(mod3)p=1(mod4)

32-1

s0 (pI3) = (2[3) = (1) "=
=—1

Also, p=5(mod4) = p=1 (mod 4)

From (3), (—1)102;1 =1
From (1), 3lp) = (1) (-1) =-1
3 is non-residues mod 5
Case 3: let p=7 (mod 12)
p=7(mod3) & p =7 (mod 4)
In this case
p=1(mod 3) p=3(mod4)
so(pl3)=(13) =1
Also, p=7(mod4)= p=3(mod4)
= p-1=2 (mod 4)

:;pT_IEl(modZ)

:»pT_l-lEO(mod2)

Hence (—=1)7 =-1

From (1), Blp) =1.(-1) =-1

. 3 is non-residue mod 7

Case 4:letp=11 (mod 12)
p=11(mod3) &p=11 (mod 4)

In this case
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p=2(mod 3) p=3 (mod4)
so (pI3) = (2[3) =-1
Also, p=11 (mod4)= p=3(mod4)
p—1, . p—1
As the case above (T) isodd = (-1)z =-1
From (1), (3|p) = (-1). (-1) =1
. 3 is quadratic residue mod 11

Summarizing the result of the four cases we find

3Rp if p=+1(mod12)

3Rp if p =% 5 (mod 12)

14.8 Jacobi symbol:

If p is a positive odd integer with prime factorization
P=[Ii-;p;% we have to define the Jacobi symbol for any integer ‘n’,
OP) =IT_,(lp)% —— (%

where (n|p;) is Legendre symbol

Note:

Define (n|1) = 1 and (n|p) is called a Jacobi symbol.

Remark:
The values of (n|p) are either 1, -1 (or) 0. (n|p) = 0 with (n, p) > 1.

If the congruence x? = n (mod p) has a solution then ((n|p;) = 1 for each
prime p;, in (*) and hence (njp) = 1

However, converse is not true.

Since (n|p) = 1 if an even number of factors -1 appears in (*).
Theorem: 14.9

If P and Q are positive odd integers, we have

(@) (m|P) (n|P) = (mn|P)
(b) (m|P) (mQ) = (mn|PQ)
(¢) (m|P) = (n|P) whenever m =n (mod p).
(d) (a?n|P) = (n|P) whenever (a, P) = 1
Proof:
Let P =[Ii_; p;% where p;s are odd prime

Now,
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@  (mP) (P)={IT;_,(mlp)% HIT,_,(nlp)*}
= [T, [(mIp)™ (nlp)™]
=TT _.[(mlp) (nlp)]®
=IT_,[(mnlp)]®
= (mn|P)
(ie) (m[P) (n[P) = (mn[P)
. Jacobi symbol is completely multiplicative.
(b) let P= p;“1p,*2 .. p%tpp %1 L p, 0T
Q= pPrpe P pFrophs
Where p; s are odd prime and not necessarily distinct
Now, (m[P) = (m[p;“1) (m|p,*2) ... (m|p*) (m|pes1“t+7) ... (m|p,*7)
(mlQ) = (m| pP) (MlpesrP+?) .. (mIp, ) .. (mipsPs )
Then,
(mP) (m|Q) =

m|
p1%) (m|p,%2) ... (m|p %) (M|pee1%+1) ... (mlp, %) (m]| p Po).

(Mpes1P41) o (mIpePr) .. (mIpsPs )
= (M| pr 122 o p “HPepy g et P p ot B pFs)
= (m[PQ)
(m|P) (m|Q) = (M|PQ)
() P=Ilzipi™
Given that m =n (mod P)
=>Plm—n
= p1Up" . ptm—n
=>p;%m-nvi
= pilm-—nVvi
-~.m = n(mod p;)V i (using Legendre symbol is periodic)
= (m|p) = (nlp;)
(mpP) = IT;_, (mlp)™
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= Hle(nlpi)“i
= (nP)
. (m|P) = (n|P) whenever m =n (mod P)
(d) (@®*n|P)=(a®|P) (n|P) ——>(1) (By(a))
P =[Ii=; p;* where p;s are odd prime not necessarily distinct prime

Now, we have to prove that (a?|P) =1
Since (a, P) =1 = P does not divides a
= a# 0(modP)
~.x% =a? (mod P) has a solution
~a’Rp = (a®>,P) =1
Theorem:14.10

If P is an odd positive integer, we have

p-1

@ (-1P)= (=1) =

p2-1

(b) 2IP) = (=1) =

Proof:

(a) letP = T2, p; where p;s are odd prime not necessarily distinct prime
=[I.,d+p—1D

=A+p —DA+p,—-1D).A+p,—1

P=1+ " (i — 1)+ T — D(pj — 1) + -

Since each p;s are odd = p; — 1 is an even taking mod 4, we get

P=1+ Y7 (p;—1) (mod 4)

P-1=Y" (p;— 1) (mod 4)

m
P zz @D (mod 4)
2 o1 2

2

m
Z (Pi—1) _ % + 2k for some integer k.
=1

Now, (-1|P) = Hzl(—llpi)

- l_["; SR
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Quadratic Resiprocity Law - (_1)21':1 2
- (—1 —~+2k
Notes v
P_
= (—1) 2 .(—1)2k
E
= (-1

CER)= (1

(b) let P2 =TT p;?

m
=[] a+p*-1
i=1
=A+p2-1DA+p,2 -1 ..(L+py2—1)
P=1+ Y7 (02 — 1) + Tiw (i — D(p? — 1) + -
Since each p;s are odd = p;* — 1is an even
We have p;? — 1 = 0 (mod s)
Taking mod 64, we get
P2=1+ Y (p2—1) (mod 64)
P*—1= 31 (p —1) (mod 64)

P2—1= )" (p?— 1) (mod 64)

p2-1_ " piP-1
=) 5D (modg)

m 2_ 2_
Z By = 222 4 gk for some integer k
i=1 8 8

= (—1) ek
- ) 1y
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Piz—l

= (D

pi®-1

L (@P)= (1) =

Hence the theorem.

Theorem: 14.11

Reciprocity law for Jacobi symbol. If P and Q are positive odd integers with
(P, Q) = 1then

(P-1)(Q-1)

(PIQ) QP) = (-1) 3

Proof:

Since (P, Q) =1

Let P = py,py, ... bom Where p;s and qj'-s are distinct primes

Q=491,92, - qn

Then (PIQ) = r [1_@ian
@P) = 1_[ [ 1@
j=1 -

(PI)QP) = r [
)

-]

rn

,=1(Pi|q1') (qjlp:)

] ! (pi-1)(aj-1)
_[ (Y
P § j=1

P;-O\" (gi-1)

(_1)21':1 2 j=1 2

P-1 Q-1
- (_1)(T+2k )(T‘I-Zk )

(P-1)(Q-1)

= (-1 & (D%

2
pi~—1

= (-1

P-1)(@Q-1)

=~ (PIQ) (QIP) = (=1)
Hence the theorem.

Example:1

4
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Determine whether -104 is a quadratic residue or non-residue of the prime
997.

Solution:
Since 104 =2.4.13
(-104]997) = (-1/997) (2]997) (4/997) (13]997)
= - (13/997)
=-(997|13)
=-(9I13)
=-(1)

Thus -104 is a quadratic non-residue mod 997.

14.9 Applications to Diophantine equation:

Equations to be solve in integers are called Diophantine equation.

The equation y? = x3 + k where k is the given integer is the example of
Diophantine equation.

Now, we have to find for a given k whether or not equation has integer
solution x, y and if so we exhibit them.

Theorem:14.12

The Diophantine equation Y? = x3 + k has no solution if k has the form
k= (4n — 1)3 — 4 m? Where m and n are integer such that no prime

P = (-1) (mod 4) divides m.

Proof:

Assume that the Diophantine equation has solution.

k= (4n—1)3 —4m?

Taking mod 4 we get,

k = (-1) (mod 4)

the Diophantine equation becomes,

Y2 = x3 — 1 (mod 4) @)

v

Forany ‘y’, y?2 = 0 (or) 1 (mod 4)

If x is even, then x3 = 0 (mod 4)

If x = —1 (mod 4) then x3 = —1 (mod 4)
The equation (1) is not satisfied
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If x = 1 (mod 4) then x3 = 1 (mod 4)
So that Y2 = x3 — 1 (mod 4) satisfied
~x = 1(mod 4)

Leta=4n-1thena = —1 (mod 4)
Now, k= (4n — 1)3 — 4 m?

a® —4m?

The equation y? = x3 + k becomes

y2= x3+ a®—4m?

y2+4m?= x3+ a3
y2+4m?=(x+a) (a? —ax + x?)
Consider, (a? —ax + x?) = x? + x + 1 (mod 4)
=1+1+1(mod4)
= —1 (mod 4)
(a? —ax + x?) = —1(mod 4)
. a? —ax + x? is an odd and there exists one prime divisor = —1 (mod 4)
(i.e.) all prime divisors cannot be = 1 (mod 4)
Let p be a prime such that p = —1 (mod 4) that divides a? — ax + x?

(i.e.) p|y% + 4 m?
= y2+4m? =0 (mod4)
= y%2 = —4m?(mod 4)
But p does not divides m
Since, (—4 m?|p) = (-1|p) (4Ip) (m?|p)
= (-1lp)
(-4 m?|p) =—1which is contradiction

The equation y? = x3 + k has no solution if k = (4n — 1)3 — 4 m?

14.10 Exercise:

1. Determine whether 888 is quadratic residue or non-residue of the prime
1999.

2. Determine whether 97 is a quadratic residue or non-residue mod 383.
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3. Determine those odd primes p for which (-3|p) = 1 and those for which (-
3p) =-1

4. Prove that 5 is a quadratic residue of an odd prime p if p ==+1 (mod 10),
and that 5 is a non residue if p =+ 3 (mod 10)

5. Let p be an odd prime. Assume that the set {1, 2..., p-1} can be expressed
as the union of two nonempty subsets S and T, S # T, such that the product
(mod p) of any two elements in the same subset lies in S, whereas the
product (mod p) of any elements in S with any elements in T lies in T.

Prove that S consists of the quadratic residues and T of the non residue’s
mod p.

6. Prove that n* + 4 composite for n > 1..
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